• Title/Summary/Keyword: Noxious working environment

Search Result 8, Processing Time 0.017 seconds

The Wearing Conditions of Working Clothes According to the Working Environment and Working Processes at Industry Sites -With Reference to Machinery, Automobiles, and the Shipbuilding Industry- (산업현장의 작업환경 및 공정에 따른 작업복 착의실태 -기계.자동차.조선업을 중심으로-)

  • Bae, Hyun-Sook;Park, Hye-Won;Park, Gin-Ah;Kim, Jie-Kwan
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.8
    • /
    • pp.1378-1391
    • /
    • 2010
  • This study examines the wearing conditions of working clothes according to the working environment and working processes at machinery, automobile, shipbuilding industry sites. It also investigates the relationship between the wearing sense of working clothes and the overall comfort according to work processes. The hazardous working environment was high in the order of the shipbuilding industry, machinery, and automobiles. The findings on the harmful overall work environmental factors were the noise, heavy dust, and noxious fumes, respectively. In general, the satisfaction with the wearing performance of working clothes was low especially with regard to sweat absorbency, sweat permeability, body protection and covering, and the work motion suitability. In respect of the correlation between the overall comfort and the wearing sense of working clothes, the satisfaction was decreased in the order of movement comfort, sensual comfort, and physiological comfort.

Strategies for reducing noxious gas emissions in pig production: a comprehensive review on the role of feed additives

  • Md Mortuza Hossain;Sung Bo Cho;In Ho Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.237-250
    • /
    • 2024
  • The emission of noxious gases is a significant problem in pig production, as it can lead to poor production, welfare concerns, and environmental pollution. The noxious gases are the gasses emitted from the pig manure that contribute to air pollution. The increased concentration of various harmful gasses can pose health risks to both animals and humans. The major gases produced in the pig farm include methane, hydrogen sulfide, carbon dioxide, ammonia, sulfur dioxide and volatile fatty acids, which are mainly derived from the fermentation of undigested or poorly digested nutrients. Nowadays research has focused on more holistic approaches to obtain a healthy farm environment that helps animal production. The use of probiotics, prebiotics, dietary enzymes, and medicinal plants in animal diets has been explored as a means of reducing harmful gas emissions. This review paper focuses on the harmful gas emissions from pig farm, the mechanisms of gas production, and strategies for reducing these emissions. Additionally, various methods for reducing gas in pigs, including probiotic interventions; prebiotic interventions, dietary enzymes supplementation, and use of medicinal plants and organic acids are discussed. Overall, this paper provides a comprehensive review of the current state of knowledge on reducing noxious gas in pigs and offers valuable insights for pig producers, nutritionists, and researchers working in this area.

The Work Environment and Wearing Conditions of Industrial Protective Clothing in Shipbuilding Workshops (조선업 작업장의 작업환경 및 산업용 보호복의 착의실태)

  • Bae, Hyun-Sook;Kim, Min-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.5
    • /
    • pp.512-522
    • /
    • 2012
  • This study examined the work environment and wearing conditions of industrial protective clothing in shipbuilding workshops. It also investigated the relationship between the wearing sensation of industrial protective clothing and overall comfort, according to work process. In addition, the work posture according to work process was evaluated based on ergonomic factors. The wearing rate of industrial protective clothing was 73.3%, 66.7%, and 60.1% for workers engaged in welding, grinding, and painting, respectively. The harmful work environment factors, listed from most harmful to least harmful, were found to be high temperature pyrogens, noxious fumes, organic solvents, UV rays, and heavy dust. The aspect of wearing performance of industrial protective clothing that was most related to user dissatisfaction was poor sweat absorbency. In terms of the correlation between the overall comfort and the wearing sensation of industrial protective clothing, the satisfaction was low shown in orders of physiological comfort, sensual comfort, and movement comfort.

The Analysis on the Work Environment and Working Clothes Wearing Conditions of Shipyard Painters (조선소 도장작업자의 작업환경 및 작업복 착의실태 분석)

  • Bae, Hyun-Sook;Park, Hye-Won;Park, Gin-Ah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.3
    • /
    • pp.518-528
    • /
    • 2010
  • This study analyzes the work environment and the work clothes wearing conditions of shipyard painters. In addition to this, three types of experimental painting work clothes were evaluated by painters in terms of the material performance and wearing functions. The findings on the harmful painting work environmental factors were organic solvents, noise, heavy dust, high temperatures, and noxious fumes. The body parts damaged during painting operations were the skin, arms, whole body, and face. In general, the satisfaction with the wearing performance of work clothes for painting was low especially in regards to sweat absorbency, sweat permeability, body protection, covering, and the work motion suitability. The satisfaction with the wearing sense of painting working clothes (regardless of the type of material) was high in the order of movement comfort> sensual comfort> physiological comfort. The satisfaction in overall comfort according to the types of material was high in the order of nylon> SMS nonwoven fabric> SF nonwoven fabric.

Status quo Analysis on the Wearing Conditions of Working Clothes according to the Working Environment and Working Process -With reference to the Shipbuilding Industry Workers- (작업환경 및 공정에 따른 작업복 착의실태 분석 -조선업 근로자를 중심으로-)

  • Bae, Hyun-Sook;Park, Hye-Won;Park, Gin-Ah;Kim, Jie-Kwan
    • Fashion & Textile Research Journal
    • /
    • v.12 no.2
    • /
    • pp.203-213
    • /
    • 2010
  • This study examined the wearing conditions of working clothes of shipbuilding industry workers according to the working environmental factors and working process features. It was also investigated the relationship between the wearing sense of working clothes and the overall comfort according to work processes. In the working process of shipbuilding industry, the process of fitting, welding, grinding and painting were chosen by considering work environmental factors, disaster types, hazardous materials, work process features, working clothes and safety equipments of each work categorized. The workers of fitting process usually wore the standard working clothes, while more than 60% of the workers of welding, grinding and painting wore the specialized protective clothes. The hazardous work environmental factors such as noise, heavy dust, high temperature and noxious fumes affected to the workers of fitting, welding and grinding. However, the workers of painting were greatly damaged by organic solvent. The dissatisfaction with the wearing performance of working clothes was highly shown in the sweat absorbency, moisture permeability and body protection. In respect of the correlation between the overall comfort and the wearing sense of working clothes, the satisfaction was decreased in orders of movement comfort> sensual comfort> physiological comfort.

A Study on the Safety Assessment of Zinc Plating Process (아연도금공정의 안전성평가)

  • Rhie, Kwang-Won;Park, Moon-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.148-154
    • /
    • 2003
  • There are now the plating process that have many hazardous factor cause of the using numerous noxious chemical and bad working environments. The purpose of the study is to make a selection of suitable safety evaluation method that can analyze and righteously find with numerous hazardous factor of the plating process. And another purpose is to systematically adjust the risk of plating process by comprehension of the role of process, equipment, and source material. Therefore, these studies are carried out in the following three investigations of this report. The first research understands the injurious human health and environment by analyzing hazardous material based on the MSDS. To evaluate the safety of process and compartment, the second research is proposed the security secure counterproposal by using the FMEA and the HAZOP. The final research is devoted to systematically analyze the hazard by applying for reasonable guide word and doing the HAZOP for hazardous factor in specific process.

A Study on the Factors of Absenteeism among the Manufacturing Workers (제조업 근로자들의 결근요인 분석)

  • Lee, Dong-Bae;Lee, Tae-Yong;Cho, Young-Chae;Lee, Young-Soo;Oh, Jang-Kyun;Park, Am
    • Journal of Preventive Medicine and Public Health
    • /
    • v.26 no.4 s.44
    • /
    • pp.574-586
    • /
    • 1993
  • This study was to examine the actual conditions and contributing factors of absenteeism in manufacturing workers. Subjects were 1,184 workers employed in Taejon city and the observation period for absenteeism was 3 months (June to August), 1992. We obtained the following results. 1. Percentage of the absentees among the studied subjects were 21.1% in gross absence and 6.9% in sickness absence. Gross absence rate of subjects was 1.2% and sickness absence rate was 0.5%. 2. In the group of absentees, mean days of absence was 2.8 days and those of sickness was 4.4 days. Mean days of sickness absence due to injury was higher than that of illness, but the total days of sickness absence was high in extremity injuries, trunk injury, general fatigue, head injury, musculoskeletal problem in that order. 3. Variables contributing to the absence were job classification, education level, working hours per day, exposure of noxious factor, worker classification. 4. In the group of absentees, variables influencing the gross absence rate were working atmosphere, body mass infer, working environment, working hours per day but those of the sickness absence were working hours per day, education level and working atomosphere.

  • PDF

Assessment of Risk of Exposure to Chemicals in the Analysis Centers of Organizations for measuring the Working Environment, using CHARM (CHARM을 이용한 작업환경측정기관 분석실의 화학물질노출 위험성 평가 연구)

  • Park, Hyun-A;Choi, Seo-Yeon;Woo, In-Sung;Rie, Dong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.660-668
    • /
    • 2017
  • In this study, we conducted an assessment of the risks posed by the noxious chemicals often handled at the analysis centers of organizations involved in Work Environment Measurement (WEM) using the Chemical Hazard Risk Management (CHARM) system. For this purpose, six organizations involved in WEM located in Seoul and Gyeonggi, which conducted the risk assessment, were selected and, as a result, 29 materials were selected as chemical substances presenting a risk of exposure. In terms of their physical properties, there were 16 liquid and 10 solid materials, and for the special management materials (CMR), the findings were as follows: 'Carcinogenic' 1A - 11 and 1B - 1 (2 - 8); 'Mutagenic' 1A - 4 and 1B - 3 (2 - 8); and 'Repro-toxic' 1A - 0 and 1B - 1 (2 - 6). In the risk estimation, 30.4%, 66.1% and 3.6% of the materials presented 'low', 'average' and 'high' risks, respectively. In addition, two of these six institutions had materials presenting a 'high' risk. This study is significant in that the risk assessment was conducted using CHARM, a chemical substance assessment tool. It is expected that the results will be utilized as the basic data for safety assessment, the establishment of a plan for emergency measures and drawing up a safety management manual, and the institutional and legal management of accidents and risks in the analysis centers of organizations involved in WEM and the management of chemicals by drawing attention to the risks involved.