• Title/Summary/Keyword: Novel virus

Search Result 293, Processing Time 0.026 seconds

Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19)

  • Ahn, Dae-Gyun;Shin, Hye-Jin;Kim, Mi-Hwa;Lee, Sunhee;Kim, Hae-Soo;Myoung, Jinjong;Kim, Bum-Tae;Kim, Seong-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.313-324
    • /
    • 2020
  • Coronavirus disease 2019 (COVID-19), which causes serious respiratory illness such as pneumonia and lung failure, was first reported in Wuhan, the capital of Hubei, China. The etiological agent of COVID-19 has been confirmed as a novel coronavirus, now known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is most likely originated from zoonotic coronaviruses, like SARS-CoV, which emerged in 2002. Within a few months of the first report, SARS-CoV-2 had spread across China and worldwide, reaching a pandemic level. As COVID-19 has triggered enormous human casualties and serious economic loss posing global threat, an understanding of the ongoing situation and the development of strategies to contain the virus's spread are urgently needed. Currently, various diagnostic kits to test for COVID-19 are available and several repurposing therapeutics for COVID-19 have shown to be clinically effective. In addition, global institutions and companies have begun to develop vaccines for the prevention of COVID-19. Here, we review the current status of epidemiology, diagnosis, treatment, and vaccine development for COVID-19.

Structure and Function of the Influenza A Virus Non-Structural Protein 1

  • Han, Chang Woo;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1184-1192
    • /
    • 2019
  • The influenza A virus is a highly infectious respiratory pathogen that sickens many people with respiratory disease annually. To prevent outbreaks of this viral infection, an understanding of the characteristics of virus-host interaction and development of an anti-viral agent is urgently needed. The influenza A virus can infect mammalian species including humans, pigs, horses and seals. Furthermore, this virus can switch hosts and form a novel lineage. This so-called zoonotic infection provides an opportunity for virus adaptation to the new host and leads to pandemics. Most influenza A viruses express proteins that antagonize the antiviral defense of the host cell. The non-structural protein 1 (NS1) of the influenza A virus is the most important viral regulatory factor controlling cellular processes to modulate host cell gene expression and double-stranded RNA (dsRNA)-mediated antiviral response. This review focuses on the influenza A virus NS1 protein and outlines current issues including the life cycle of the influenza A virus, structural characterization of the influenza A virus NS1, interaction between NS1 and host immune response factor, and design of inhibitors resistant to the influenza A virus.

Enhancement of DNA Vaccine-induced Immune Responses by Influenza Virus NP Gene

  • Choi, So-Young;Suh, You-Suk;Cho, Jae-Ho;Jin, Hyun-Tak;Chang, Jun;Sung, Young-Chul
    • IMMUNE NETWORK
    • /
    • v.9 no.5
    • /
    • pp.169-178
    • /
    • 2009
  • DNA immunization induces B and T cell responses to various pathogens and tumors. However, these responses are known to be relatively weak and often transient. Thus, novel strategies are necessary for enhancing immune responses induced by DNA immunization. Here, we demonstrated that co-immunization of influenza virus nucleoprotein (NP) gene significantly enhances humoral and cell-mediated responses to codelivered antigens in mice. We also found that NP DNA coimmunization augments in vivo proliferation of adoptively transferred antigen-specific CD4 and CD8 T cells, which enhanced protective immunity against tumor challenge. Our results suggest that NP DNA can serve as a novel genetic adjuvant in cocktail DNA vaccination.

Serological survey for Getah virus in domestic pigs of South Korea

  • Yu-Ri Park;Eun-Ju Kim;Hye Jeong Lee;Bang-Hun Hyun;Dong-Kun Yang
    • Korean Journal of Veterinary Research
    • /
    • v.63 no.1
    • /
    • pp.1.1-1.4
    • /
    • 2023
  • Several outbreaks of Getah virus (GETV) have been reported in horses and pigs, causing large economic losses. However, there have been no reports describing serological survey for GETV in South Korea pigs. The present study conducted serological survey of GETV in South Korean pigs. A total of 670 whole blood samples were collected from domestic pigs. The overall seropositive rate was 26.4%, higher than the rates observed in racehorses in 2013-2014. Preparations for epidemics of novel diseases caused by climate change should include regular serological survey for these diseases, including GETV, and the development of vaccines against novel pathogens.

Construction of the Novel Baculovirus Transfer Vector Using the p10 Gene of BmNPV (BmNPV의 p10 유전자를 이용한 새로운 전이벡터 개발)

  • 강석우;진병래
    • Journal of Sericultural and Entomological Science
    • /
    • v.39 no.2
    • /
    • pp.180-185
    • /
    • 1997
  • To develope the novel baculovirus transfer vector, the p10 gene was cloned from the Bombyx mori nuclear polygedrosis virus (BmNPV) vB2 strain isolated from the B. mori larvae of sericultural farms. The novel transfer vector was constructed by using the p10 gene of BmNPV vB2 strain was 210 bp. The TAAG sequence at the -71 bp of upstream from translation initiator ATG and two polyadenylation signal site at the downstream from terminator TAA were also detected in the p10 gene. The 5' and 3' flanking region of the p10 gene amplified by PCR was cloned into pBluescriptII SK(+) and then transfer vector pBm10 was construceted. The 7.9 kb pBm10 was analysed by restriction enzymes and the map was confirmed. In order to determine the expression of foreign gene of pBm10, $\beta$-galactosidase gene was inserted in the SmaI site of foreign gene cloning site of pBm10. The pBm10 containing $\beta$-galactosidase gene was cotranfected wth genomic DNA of BmNPV vB2 into BmN-4 cells. The recombinant baculovirus expressing $\beta$-galactosidase was also produced polygedra in the infected cells. The results indicated that pBm10 is functional, suggesting that in the baculovirus expression vector system, the recombinant virus produced by pBm10 was effective by oral infection for the producing recombinant proteins in in vivo expression.

  • PDF

Rapid determination of baculovirus titers an antibody-based assay

  • Kwon, M.S.;Dojimal, T.;Park, Enoch-Y.
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.315-319
    • /
    • 2003
  • A novel method is developed to yield virus titers in 10 h, is easy to .perform using 96-well plates, and applicable to both any Autographa californica nucleopolyhyderovirus (AcNPV) and Bombyx mori nucleopolyhedrovirus (BmNPV)-based recombinant baculovirus. This assay uses an antibody to a DNA-binding protein to detect the infected cells via immune-staining. The titer is determined by counting foci produced due to infection of virus under a fluorescent microscopy. The required incubation period was shortened considerably because infected cells expressed viral antigens at the post infection time of 4 h. Therefore, 10 hours were enough to estimate the virus titer including virus infection time, insect cell culture, and estimation of virus titer.

  • PDF

Molecular Docking Study of Novel Anti-Hepatitis B Virus Agents Isolated from Talaromyces Species

  • Babu, Sathya
    • Journal of Integrative Natural Science
    • /
    • v.9 no.1
    • /
    • pp.23-27
    • /
    • 2016
  • Hepatitis B virus is the leading source of liver disorders and is a global health problem and needs advancements in its treatment against increasing problems. Recently five vanitaracin derivatives were isolated from the fungus Talaromyces species which have anti-Hepatitis B virus activity. Hence, in the present study, molecular docking was carried out with five vanitaracin derivatives isolated from Talaromyces species and three known inhibitors.The objective of this work is to study the interaction of newly isolated compounds and compare its interaction with known inhibitors. The docking results revealed that vanitaracin derivatives have good interactions and has better docking score with the Hepatitis B virus and suggest SER2, SER4 and ASP30 are important residues involved in interaction with the inhibitors. These result authenticates vanitaracin derivatives contributes to inhibitory activity of Hepatitis B virus to treat liver disorders.

Genome Sequences of Spinach Deltapartitivirus 1, Spinach Amalgavirus 1, and Spinach Latent Virus Identified in Spinach Transcriptome

  • Park, Dongbin;Hahn, Yoonsoo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1324-1330
    • /
    • 2017
  • Complete genome sequences of three new plant RNA viruses, Spinach deltapartitivirus 1 (SpDPV1), Spinach amalgavirus 1 (SpAV1), and Spinach latent virus (SpLV), were identified from a spinach (Spinacia oleracea) transcriptome dataset. The RNA-dependent RNA polymerases (RdRps) of SpDPV1, SpAV1, and SpLV showed 72%, 53%, and 93% amino acid sequence identities with the homologous RdRp of the most closely related virus, respectively, suggesting that SpDPV1 and SpAV1 were novel viruses. Sequence similarity and phylogenetic analyses revealed that SpDPV1 belonged to the genus Deltapartitivirus of the family Partitiviridae, SpAV1 to the genus Amalgavirus of the family Amalgaviridae, and SpLV to the genus Ilarvirus of the family Bromoviridae. Based on the demarcation criteria, SpDPV1 and SpAV1 are considered as novel species of the genera Deltapartitivirus and Amalgavirus, respectively. This is the first report of these two viruses from spinach.

A Novel Role of Classical Swine Fever Virus Erns Glycoprotein in Counteracting the Newcastle Disease Virus (NDV)-mediated IFN-β Induction

  • Xia, Yan-Hua;Chen, Liu;Pan, Zi-Shu;Zhang, Chu-Yu
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.611-616
    • /
    • 2007
  • $E^{rns}$ is an envelope glycoprotein of classical swine fever virus (CSFV) and has an unusual feature of RNase activity. In the present study, we demonstrate that $E^{rns}$ counteracts Newcastle disease virus (NDV)-mediated induction of IFN-$\beta$. For this purpose, $E^{rns}$ fused to the enhanced green fluorescent protein (EGFP) was transiently expressed in porcine kidney 15 (PK15) cells. In luciferase activity assay, $E^{rns}$-EGFP was found to prevent IFN-$\beta$ promoter-driven luciferase expression and block the induction of IFN-$\beta$ promoter mediated by NDV in a dose-dependent manner. Through IFN-specific semi-quantitative RT-PCR detection, obvious decrease of IFN-$\beta$ mRNA in NDV-infected PK15 cells was observed in the presence of $E^{rns}$-EGFP. In contrast, EGFP alone showed none of this block capacity. In addition, $E^{rns}$-EGFP mutations with RNase inactivation were also found to block NDV-mediated induction of IFN-$\beta$. These evidences establish a novel function for CSFV $E^{rns}$ glycoprotein in counteraction of the IFN-$\beta$ induction pathway.

Molecular characterization of H3N2 influenza A virus isolated from a pig by next generation sequencing in Korea

  • Oh, Yeonsu;Moon, Sung-Hyun;Ko, Young-Seung;Na, Eun-Jee;Tark, Dong-Seob;Oem, Jae-Ku;Kim, Won-Il;Rim, Chaekwang;Cho, Ho-Seong
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • Swine influenza (SI) is an important respiratory disease in pigs and epidemic worldwide, which is caused by influenza A virus (IAV) belonging to the family of Orthomyxoviridae. As seen again in the 2009 swine-origin influenza A H1N1 pandemic, pigs are known to be susceptible to swine, avian, and human IAVs, and can serve as a 'mixing vessel' for the generation of novel IAV variants. To this end, the emergence of swine influenza viruses must be kept under close surveillance. Herein, we report the isolation and phylogenetic study of a swine IAV, A/swine/Korea/21810/2021 (sw21810, H3N2 subtype). BLASTN sequence analysis of 8 gene segments of the isolated virus revealed a high degree of nucleotide similarity (94.76 to 100%) to porcine strains circulating in Korea and the United States. Out of 8 genome segments, the HA gene was closely related to that of isolates from cluster I. Additionally, the NA gene of the isolate belonged to a Korean Swine H1N1 origin, and the PB2, PB1, NP and NS genes of the isolate were grouped into that of the Triple reassortant swine H3N2 origin virus. The PA and M genes of the isolate belonged to 2009 Pandemic H1N1 lineage. Human infection with mutants was most common through contact with infected pigs. Our results suggest the need for periodic close monitoring of this novel swine H3N2 influenza virus from a public health perspective.