• Title/Summary/Keyword: Novel drugs

Search Result 392, Processing Time 0.035 seconds

Antioxidative Property of Turmeric (Curcumae Rhizoma) Ethanol Extract (울금 에탄올 추출물의 항산화 활성 비교)

  • Kang, Woo-Suk;Kim, Jeong-Han;Park, Eun-Joo;Yoon, Kwang-Ro
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.266-271
    • /
    • 1998
  • In order to find a novel antioxidant source from nature, the comparison of antioxidative activity was carried out through the CDM(conductometric determination method) with various crude drugs on palm oil, lard and soybean oil. After the preliminary experiment, we concluded that the turmeric (Curcumae Rhizoma) ethanol extract has the strongest antioxidative activity among the ten crude drugs. In case of over 0.05% of concentration turmeric ethanol extract, it has more activity than others athough the turmeric ethanol extract has similar antioxidative activity to tocopherol and rosemary extract up to 0.05% of concentration. The turmeric ethanol extract of 0.01% was more effective in lard (AI=4.59) than in palm oil (AI=1.57) and ineffective in soybean oil. When turmeric ethanol extract was added to various kind of fatty acid methyl esters at 0.05% and 0.1% respectively, the antioxidative index(AI) on oleic acid methyl ester was greatly increased, whereas the antioxidative index on linoleic acid methyl ester was decreased.

  • PDF

Risperidone as a Janus in Mood Disorder (기분장애에서 risperidone의 양면성)

  • Yoon, Doh Joon
    • Korean Journal of Biological Psychiatry
    • /
    • v.4 no.2
    • /
    • pp.198-210
    • /
    • 1997
  • To examine the double-faced thymoleptic(antidepressant and antimanic) effects of risperidone in mood disorders, this article reviews the psychotropic-induced mania, thymoleptic effects of antipsychotics, therapeutic effects of risperidone and risperidone(RIS)-induced mania(RIM) in mood disorders, risk factors of RIM, possible neurochemical mechanism of these thymoleptic effects, pathophysiological and clinical significance of thymoleptic effects, and suggestive clinical guideline of RIS in mood disorders. RIS appeared effective for bipolar disorder at a lower dose than that recommended for schizophrenia, especially in the cases of maintenance of mood stabilizers, and gradual titration from low doses. Manic induction/exacerbation can occur by chance during RIS treatment in mood disorders, schizoaffective disorders, and schizophrenias. The possible risk factors for RIM are refractory mood disorder, especially in bipolar I disorder with poor initial response ; refractory schizoaffective disorders, especially in bipolar type with poor initial response ; refractory chronic schizophrenias, especially with initial responses ; psychotic features ; higher initial doses ; rapid titration ; combined therapy with antidepressants in refractory depression ; and RIS monotherapy in mania/hypomania. RIS is a drug that preferentially block 5-HT2 receptors. The effects of low dose are due mainly to the blockade of 5-HT2 receptors. There are more gradual increase in D2 blockade with increasing dose and this D2 blocking properties become apparent at higher doses. This may be related to a modulation of dopaminergic transmission by 5-HT2 antagonism at lower doses with the direct action of RIS on DA receptors coming into play at higher dose. The serotonergic antagonistic effect may be important for its effects on depressive symptoms. This, together with adequate blo-ckade of D2 receptors, may not necessarily lead to destabilization of mood disorder, but rather to more therapeutic effects. Therefore, this dose-receptor affinity relationship with both antidepressant and antimanic effects according to treatment duration can explain a continuum of antidepressant effect, antimanic effect, behavioral stimulation, and manic/hypomanic induction/exacerbation. It was the recognition of a useful psychiatric side effects by a thoughtful observer with fertile minds that led to their ultimate utilization as psychotropic drugs, i.e., phenothiazine, MAOI, TCA, and lithium. And, in vivo pharmacological challenge by novel psychotropics, as a neurochemical probe, with more specific actions is a useful tool to select pharmacologically homogeneous subgroup of the same phenotypical(clinical) condition, to further study the unknown underlying pathogenesis of various mental illnesses. Finally, RIS may be a useful alternative or adjunctive drug for patients with mood disorders without psychotic features or refractory to treatment with standard antipsychotic drugs. The more conservative doses(tirated slowly from 1-3 mg/d) of RIS, and maintenance of mood stabilizer in the cases with risk factors of RIM are recommended in mood disorder.

  • PDF

Preparation of Amino Acid Copolymers/water-insoluble Drug Nanoparticles: Polymer Properties and Processing Variables (아미노산 공중합체/난용성 약물 나노입자의 제조: 고분자 특성 및 가공변수)

  • Yoo Ji Youn;Lee Soo-Jeong;Ahn Cheol-Hee;Choi Ji-Yeun;Lee Jonghwi
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.440-444
    • /
    • 2005
  • An increase in the surface area of drugs by reducing particle sizes from microns to nanometers has been known as an efficient method to improve the bioavailability of water-insoluble drugs. To prevent drug nanoparticles from aggregation during the processes of drug formulation, a limited number of pharmaceutical inactive ingredients such as hydroxypropyl cellulose has been employed as stabilizers or dispersants. In this study, copolymers of hydrophilic and hydrophobic amino acids were synthesized by the ring opening polymerization of their N-carboxyanhydride monomers and evaluated as novel candidates to stabilize the nanoparticles of a water insoluble drug, naproxen. Naproxen nanoparticles stabilized by synthesized amino acid copolymers were successfully prepared in the size of $200\~500nm$ in 60 min by a wet comminution process. Particle size analysis showed that the effective stabilization performance of copolymers required the hydrophobic moiety content to be higher than $10 mol\%$. However, the molecular weight and morphology of copolymers was not the critical parameters in determining the particle size reduction. Their particle size was found to be stable up to 14 days without significant aggregation.

Prediction of the human in vivo antiplatelet effect of S- and R-indobufen using population pharmacodynamic modeling and simulation based on in vitro platelet aggregation test

  • Noh, Yook-Hwan;Han, Sungpil;Choe, Sangmin;Jung, Jin-Ah;Jung, Jin-Ah;Hwang, Ae-Kyung;Lim, Hyeong-Seok
    • Translational and Clinical Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.160-165
    • /
    • 2018
  • Indobufen ($Ibustrin^{(R)}$), a reversible inhibitor of platelet aggregation, exists in two enantiomeric forms in 1:1 ratio. Here, we characterized the anti-platelet effect of S- and R-indobufen using response surface modeling using $NONMEM^{(R)}$ and predicted the therapeutic doses exerting the maximal efficacy of each enantioselective S- and R-indobufen formulation. S- and R-indobufen were added individually or together to 24 plasma samples from drug-naïve healthy subjects, generating 892 samples containing randomly selected concentrations of the drugs of 0-128 mg/L. Collagen-induced platelet aggregation in platelet-rich plasma was determined using a Chrono-log Lumi-Aggregometer. Inhibitory sigmoid $I_{max}$ model adequately described the anti-platelet effect. The S-form was more potent, whereas the R-form showed less inter-individual variation. No significant interaction was observed between the two enantiomers. The anti-platelet effect of multiple treatments with 200 mg indobufen twice daily doses was predicted in the simulation study, and the effect of S- or R-indobufen alone at various doses was predicted to define optimal dosing regimen for each enantiomer. Simulation study predicted that 200 mg twice daily administration of S-indobufen alone will produce more treatment effect than S-and R-mixture formulation. S-indobufen produced treatment effect at lower concentration than R-indobufen. However, inter-individual variation of the pharmacodynamic response was smaller in R-indobufen. The present study suggests the optimal doses of R-and S-enantioselective indobufen formulations in terms of treatment efficacy for patients with thromboembolic problems. The proposed methodology in this study can be applied to the develop novel enantio-selective drugs more efficiently.

New in vitro multiple cardiac ion channel screening system for preclinical Torsades de Pointes risk prediction under the Comprehensive in vitro Proarrhythmia Assay concepta

  • Jin Ryeol An;Seo-Yeong Mun;In Kyo Jung;Kwan Soo Kim;Chan Hyeok Kwon;Sun Ok Choi;Won Sun Park
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.3
    • /
    • pp.267-275
    • /
    • 2023
  • Cardiotoxicity, particularly drug-induced Torsades de Pointes (TdP), is a concern in drug safety assessment. The recent establishment of human induced pluripotent stem cell-derived cardiomyocytes (human iPSC-CMs) has become an attractive human-based platform for predicting cardiotoxicity. Moreover, electrophysiological assessment of multiple cardiac ion channel blocks is emerging as an important parameter to recapitulate proarrhythmic cardiotoxicity. Therefore, we aimed to establish a novel in vitro multiple cardiac ion channel screening-based method using human iPSC-CMs to predict the drug-induced arrhythmogenic risk. To explain the cellular mechanisms underlying the cardiotoxicity of three representative TdP high- (sotalol), intermediate- (chlorpromazine), and low-risk (mexiletine) drugs, and their effects on the cardiac action potential (AP) waveform and voltage-gated ion channels were explored using human iPSC-CMs. In a proof-of-principle experiment, we investigated the effects of cardioactive channel inhibitors on the electrophysiological profile of human iPSC-CMs before evaluating the cardiotoxicity of these drugs. In human iPSC-CMs, sotalol prolonged the AP duration and reduced the total amplitude (TA) via selective inhibition of IKr and INa currents, which are associated with an increased risk of ventricular tachycardia TdP. In contrast, chlorpromazine did not affect the TA; however, it slightly increased AP duration via balanced inhibition of IKr and ICa currents. Moreover, mexiletine did not affect the TA, yet slightly reduced the AP duration via dominant inhibition of ICa currents, which are associated with a decreased risk of ventricular tachycardia TdP. Based on these results, we suggest that human iPSC-CMs can be extended to other preclinical protocols and can supplement drug safety assessments.

Screening of Genetic Polymorphisms of CYP3A4 and CYP3A5 Genes

  • Lee, Jin Sol;Cheong, Hyun Sub;Kim, Lyoung Hyo;Kim, Ji On;Seo, Doo Won;Kim, Young Hoon;Chung, Myeon Woo;Han, Soon Young;Shin, Hyoung Doo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.6
    • /
    • pp.479-484
    • /
    • 2013
  • Given the CYP3A4 and CYP3A5's impact on the efficacy of drugs, the genetic backgrounds of individuals and populations are regarded as an important factor to be considered in the prescription of personalized medicine. However, genetic studies with Korean population are relatively scarce compared to those with other populations. In this study, we aimed to identify CYP3A4/5 polymorphisms and compare the genotype distributions among five ethnicities. To identify CYP3A4/5 SNPs, we first performed direct sequencing with 288 DNA samples which consisted of 96 Koreans, 48 European-Americans, 48 African-Americans, 48 Han Chinese, and 48 Japanese. The direct sequencing identified 15 novel SNPs, as well as 42 known polymorphisms. We defined the genotype distributions, and compared the allele frequencies among five ethnicities. The results showed that minor allele frequencies of Korean population were similar with those of the Japanese and Han Chinese populations, whereas there were distinct differences from European-Americans or African-Americans. Among the pharmacogenetic markers, frequencies of $CYP3A4^*1B$ (rs2740574) and $CYP3A5^*3C$ (rs776742) in Asian groups were different from those in other populations. In addition, minor allele frequency of $CYP3A4^*18$ (rs28371759) was the highest in Korean population. Additional in silico analysis predicted that two novel non-synonymous SNPs in CYP3A5 (+27256C>T, P389S and +31546T>G, I488S) could alter protein structure. The frequency distributions of the identified polymorphisms in the present study may contribute to the expansion of pharmacogenetic knowledge.

Antitumor Activity and Nephrotoxicity of the Novel Platinum(II) Coordination Complex (새로운 Platinum (II) Complex [Pt (II)(trans-d-dach)(DPPE)] $(NO_3)_2$의 항암효과 및 신독성에 관한 연구)

  • Jung Jee-Chang;Lee Moon-Ho;Chang Sung-Goo;Rho Young-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.1 s.57
    • /
    • pp.103-114
    • /
    • 1995
  • Platinum coordination complexes are currently one of the most compounds used in the treatment of solid tumors. However, its use is limited by severe side effects such as renal toxicity. Our platinum-based drug discovery program is aimed at developing drugs capable of diminishing toxicity and improving antitumor activity. We synthesized new Pt (Ⅱ) complex analogue containing 1,2-diaminocyclohexane (dach) as carrier ligand and 1,2-bis(diphenylphosphino) ethane (DPPE) as a leaving group. Furthermore, nitrate was added to improve the solubility. A new series of [Pt(trans-ddach)(DPPE).$2NO_3(PC)$ was synthesized and characterized by their elemental analysis and by various spectroscopic techniques [infrared (IR), $^{13}carbon$ nuclear magnetic resonance (NMR)]. PC demonstrated acceptable antitumor activity aganist P388, L-1210 lymphocytic leukemia cells and SK=OV3 human ovarian adenocarcinoma cells, and significant. activity as compared with that. cisplatin. The toxicity of PC was found quite less than thar of cisplatin using MTT, $[^3H]$ thymidine uptake and glucose consumption tests in rabbit proximal tubule cells, human kidney cortical cells and human renal cortical tissues. Based on these results, this novel platinum compound represent a valuable lead in the development of a new anticancer chemotherapeutic agent capable of improving antitumor activity and low toxicity.

  • PDF

In Vitro Antitumor Activity and Nephrotoxicity of the Novel Platinum(II) Coordination Complex Containing Cis-dach/Diphosphine (새로운 Platinum(II)Complex ([Pt(II)(cis-dach)(DPPP)].$(NO_3)_2$의 항암효과 및 신독성)

  • Jung, Jee-Chang;Yim, Sung-Vin;Park, Seung-Joon;Chung, Joo-Ho;Ko, Kye-Chang;Chang, Sung-Goo;Rho, Young-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.93-102
    • /
    • 1996
  • Platinum coordination complexes are currently one of the most compounds used in the treatment of solid tumors. However, its use is limited by severe side effects such as nephrotoxicity. Our platinum-based drug discovery program is aimed at developing drugs capable of diminishing toxicity and broadening the clinical spectrum of activity of cisplatin. We synthesized new Pt(II) complex analogue containing 1,2-diaminocyclohexane (dach) as carrier ligand and 1,3-bis(diphenyl phosphino)propane (DPPP) as a leaving group. Furthermore, nitrate was added to improve the solubility. A new series of PC-1 [Pt(cis-dach) (DPPP)]. $2NO_3_2$ was synthesized and characterized by their elemental analysis and by various spectroscopic techniques [infrared (IR), $^{13}carbon$ nuclear magnetic resonance (NMR)]. PC-1 was demonstrated acceptable antitumor activity aganist SKOV -3, OVCAR-3 human ovarian adenocarcinomacells and significant activity as compared with that of cisplatin. The toxicity of PC-1 was found quite less than that of cisplatin using MTT, $[^3H]thymidine$ uptake and glucose consumption tests in rabbit proximal tubule cells, human kidney cortical cells and human renal cortical tissues. Based on these results, this novel platinum compound represent a valuable lead in the development of a new anticancer chemotherapeutic agent capable of improving antitumor activity and low toxicity.

  • PDF

Ribosomal Crystallography: Peptide Bond Formation, Chaperone Assistance and Antibiotics Activity

  • Yonath, Ada
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.1-16
    • /
    • 2005
  • The peptidyl transferase center (PTC) is located in a protein free environment, thus confirming that the ribosome is a ribozyme. This arched void has dimensions suitable for accommodating the 3'ends of the A-and the P-site tRNAs, and is situated within a universal sizable symmetry-related region that connects all ribosomal functional centers involved in amino-acid polymerization. The linkage between the elaborate PTC architecture and the A-site tRNA position revealed that the A-to P-site passage of the tRNA 3'end is performed by a rotatory motion, which leads to stereochemistry suitable for peptide bond formation and for substrate mediated catalysis, thus suggesting that the PTC evolved by genefusion. Adjacent to the PTC is the entrance of the protein exit tunnel, shown to play active roles in sequence-specific gating of nascent chains and in responding to cellular signals. This tunnel also provides a site that may be exploited for local co-translational folding and seems to assist in nascent chain trafficking into the hydrophobic space formed by the first bacterial chaperone, the trigger factor. Many antibiotics target ribosomes. Although the ribosome is highly conserved, subtle sequence and/or conformational variations enable drug selectivity, thus facilitating clinical usage. Comparisons of high-resolution structures of complexes of antibiotics bound to ribosomes from eubacteria resembling pathogens, to an archaeon that shares properties with eukaryotes and to its mutant that allows antibiotics binding, demonstrated the unambiguous difference between mere binding and therapeutical effectiveness. The observed variability in antibiotics inhibitory modes, accompanied by the elucidation of the structural basis to antibiotics mechanism justifies expectations for structural based improved properties of existing compounds as well as for the development of novel drugs.

Effect of Capsaicin and Its Novel Derivative on the Isolated Guinea Pig Bronchi (캡사이신과 그 합성유도체의 기니픽 기관지 평활근에 대한 작용)

  • 정이숙;이부연;공재양;박노상;조태순;신화섭
    • Journal of Food Hygiene and Safety
    • /
    • v.9 no.3
    • /
    • pp.163-168
    • /
    • 1994
  • In the present study we investigated the peripheral function of capsaicin and KR-25018, a newly synthesized capsaicin derivative, which was demonstrated to have a potent analgesic activity through different mechanism from morphine and nonsteroidal antiinflammatory drugs. Capsaicin (10-8~10-5 M) and KR-25018 (10-8~10-5 M) produced concentration-dependent contractions of the isolated guinea pig bronchi. There were no significant differences in the maximum response and the EC50 values (EC50: 0.137$\pm$0.025 $\mu$M and 0.097$\pm$0.031 $\mu$M for capsaicin and KR-25018, respectively, P>0.05). Phosphoramidon (10 $\mu$M) and indomethacin (10 $\mu$M) had no significant effect on contractile response to the submaximal concentration range of capsaicin and KR-25018 (3$\times$10-9~3$\times$10-7 M). The response to KR-25018, like that to capsaicin, was significantly inhibited by ruthenium red with reduction in the maximum response, which is indicative of non-competitive antagonism. A further common feature of the responses to capsaicin and KR-25018 in the guinea pig bronchi was their sensitivity to capsazepine. Capsazepine caused a rightward parallel shift in concentration-response curves obtained by capsaicin and KR-25018. the pA2 values of capsazepine were 5.90 and 5.99 against capsaicin and KR-25018 response, respectively. In conclusion, KR-25018 and capsaicin exert their contractile effects in the isolated guinea pig bronchial muscle by common mechanisms, probably via the activation of a specific receptor.

  • PDF