• Title/Summary/Keyword: Novel cancer therapy

Search Result 222, Processing Time 0.028 seconds

[Retraction]Anti-inflammatory activity of a short peptide designed for anti-cancer: a beneficial off-target effect of tertomotide ([논문철회]항암백신 tertomotide의 항염활성 연구)

  • Lee, Hyosung
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.101-107
    • /
    • 2022
  • Tertomotide is a peptide vaccine developed for anti-cancer therapy. Since it has been found to ameliorate inflammatory symptoms in animal studies and clinical test, we investigated anti-inflammation activity of the tertomotide and the mechanism of action in monocyte in order to assess if tertomotide may serve as an anti-inflammatory agent by checking inflammatory cytokines and related signaling pathway following tertomotide treatment. We found that tertomotide reduced the level of pro-inflammatory cytokines such as TNF-α, IL-1β, IL-8 in LPS- or PMA-stimulated monocyte cell line and suppressed NF-κB signaling including the activation of ERK1/2 and P38 MAPK following TNF-α treatment. These results may correlate to the beneficial findings in animal studies, implicating that tertomotide may act as a potential anti-inflammatory agent. This study is an exemplary case for convergence that a computationally designed peptide for immunological purpose exerting unexpected biological activity may elicit novel anti-inflammatory drug.

Effects of Vitamin E Derivative TMG on the Radiation Protector and Tumor Growth during Radiotherapy

  • Yeun-Hwa Gu;Ryo Matsumoto;Takenori Yamashita
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • Background: The purpose of this study is to evaluate the immunosuppressive and antioxidant effects of a novel radioprotective agent using the vitamin E derivative 2-(alpha-D-glucopyranosyl)methyl-2,5,7,8-tetramethylchroman-6-ol (TMG) and its effect on tumors, and to study its usefulness. Materials and Methods: In this study, C57BL/6NCrSlc mice were divided into four groups (control, TMG, radiation therapy [RT], and RT+TMG), using 10 mice in each group. In the TMG and 2 Gy+TMG groups, 500 mg/kg TMG was administered. Two groups (2 Gy and 2 Gy+TMG) among RT and RT+TMG groups were irradiated with 2 Gy in a single fraction, while the other two groups (6 Gy and 6 Gy+TMG) were irradiated locally with 6 Gy in three fractions. Results and Discussion: TMG positively affected CD4+ and CD8+ T lymphocytes. Tumor volumes and growth inhibition rates were compared. In order to evaluate how TMG administration affected tumor growth, Ehrlich cancer cells were injected into the thigh of mice, and the tumor volume and growth suppression rate were compared. Not only RT but also TMG alone inhibited tumor growth. If RT conducted to the mice with TMG, TMG could increase the number of leukocytes, primarily that of lymphocytes. TMG also inhibited tumor growth in addition to RT. Tumor growth was significantly inhibited in the 6 Gy+TMG group. Conclusion: In conclusion, TMG exerted an immunopotentiating effect mainly by increasing the white blood cell numbers including that of lymphocytes. In addition to RT, TMG also inhibited tumor growth. Therefore, TMG is considered to be a useful radioprotective agent in radiotherapy without tumor growth induction.

Regulation of Pipernonaline on Biological Functions of Human Prostate Cancer Cells Based on Microarray Analysis (Microarray를 이용한 pipernonaline의 인간 전립선 암세포에 대한 기능 조절 분석)

  • Kim, Sang-Hun;Kim, Kwang-Youn;Yu, Sun-Nyoung;Park, Seul-Ki;Kwak, In-Seok;Rhee, Moon-Soo;Bang, Byung-Ho;Chun, Sung-Sik;Ahn, Soon-Cheol
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1552-1557
    • /
    • 2012
  • It has been reported that pipernonaline isolated from Piper longum Linn. has a wide biochemical and pharmacological effect, including antitumor activity in prostate cancer PC-3 cells. However, its mechanism and expression pattern of many genes involved in biological functions are not clearly understood. To perform the gene expression study in PC-3 cells treated with pipernonaline, a cDNA microarray chip composed of 44,000 human cDNA probes was used. As a result, cell cycle-related genes, apoptosis-related genes, and cell proliferation/growth-related genes have been identified in gene ontology of the DAVID database. These results suggest that pipernonaline has antitumor activity by regulating the expression pattern of genes involved in biological signaling pathway in prostate cancer PC-3 cells. Further, additional analysis of these microarray data can be a useful tool to identify the mechanism and discovery of novel genes in cancer therapy.

Dosimetric Analysis of a Phase I Study of PSMA-Targeting Radiopharmaceutical Therapy With [177Lu]Ludotadipep in Patients With Metastatic Castration-Resistant Prostate Cancer

  • Seunggyun Ha;Joo Hyun O;Chansoo Park;Sun Ha Boo;Ie Ryung Yoo;Hyong Woo Moon;Dae Yoon Chi;Ji Youl Lee
    • Korean Journal of Radiology
    • /
    • v.25 no.2
    • /
    • pp.179-188
    • /
    • 2024
  • Objective: 177Lutetium [Lu] Ludotadipep is a novel prostate-specific membrane antigen targeting therapeutic agent with an albumin motif added to increase uptake in the tumors. We assessed the biodistribution and dosimetry of [177Lu]Ludotadipep in patients with metastatic castration-resistant prostate cancer (mCRPC). Materials and Methods: Data from 25 patients (median age, 73 years; range, 60-90) with mCRPC from a phase I study with activity escalation design of single administration of [177Lu]Ludotadipep (1.85, 2.78, 3.70, 4.63, and 5.55 GBq) were assessed. Activity in the salivary glands, lungs, liver, kidneys, and spleen was estimated from whole-body scan and abdominal SPECT/CT images acquired at 2, 24, 48, 72, and 168 h after administration of [177Lu]Ludotadipep. Red marrow activity was calculated from blood samples obtained at 3, 10, 30, 60, and 180 min, and at 24, 48, and 72 h after administration. Organand tumor-based absorbed dose calculations were performed using IDAC-Dose 2.1. Results: Absorbed dose coefficient (mean ± standard deviation) of normal organs was 1.17 ± 0.81 Gy/GBq for salivary glands, 0.05 ± 0.02 Gy/GBq for lungs, 0.14 ± 0.06 Gy/GBq for liver, 0.77 ± 0.28 Gy/GBq for kidneys, 0.12 ± 0.06 Gy/GBq for spleen, and 0.07 ± 0.02 Gy/GBq for red marrow. The absorbed dose coefficient of the tumors was 10.43 ± 7.77 Gy/GBq. Conclusion: [177Lu]Ludotadipep is expected to be safe at the dose of 3.7 GBq times 6 cycles planned for a phase II clinical trial with kidneys and bone marrow being the critical organs, and shows a high tumor absorbed dose.

A Novel Anti-PD-L1 Antibody Exhibits Antitumor Effects on Multiple Myeloma in Murine Models via Antibody-Dependent Cellular Cytotoxicity

  • Ahn, Jae-Hee;Lee, Byung-Hyun;Kim, Seong-Eun;Kwon, Bo-Eun;Jeong, Hyunjin;Choi, Jong Rip;Kim, Min Jung;Park, Yong;Kim, Byung Soo;Kim, Dae Hee;Ko, Hyun-Jeong
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.166-174
    • /
    • 2021
  • Multiple myeloma is a malignant cancer of plasma cells. Despite recent progress with immunomodulatory drugs and proteasome inhibitors, it remains an incurable disease that requires other strategies to overcome its recurrence and non-response. Based on the high expression levels of programmed death-ligand 1 (PD-L1) in human multiple myeloma isolated from bone marrow and the murine myeloma cell lines, NS-1 and MOPC-315, we propose PD-L1 molecule as a target of anti-multiple myeloma therapy. We developed a novel anti-PD-L1 antibody containing a murine immunoglobulin G subclass 2a (IgG2a) fragment crystallizable (Fc) domain that can induce antibody-dependent cellular cytotoxicity. The newly developed anti-PD-L1 antibody showed significant antitumor effects against multiple myeloma in mice subcutaneously, intraperitoneally, or intravenously inoculated with NS-1 and MOPC-315 cells. The anti-PD-L1 effects on multiple myeloma may be related to a decrease in the immunosuppressive myeloid-derived suppressor cells (MDSCs), but there were no changes in the splenic MDSCs after combined treatment with lenalidomide and the anti-PD-L1 antibody. Interestingly, the newly developed anti-PD-L1 antibody can induce antibody-dependent cellular cytotoxicity in the myeloma cells, which differs from the existing anti-PD-L1 antibodies. Collectively, we have developed a new anti-PD-L1 antibody that binds to mouse and human PD-L1 and demonstrated the antitumor effects of the antibody in several syngeneic murine myeloma models. Thus, PD-L1 is a promising target to treat multiple myeloma, and the novel anti-PD-L1 antibody may be an effective anti-myeloma drug via antibody-dependent cellular cytotoxicity effects.

TFAP2C Promotes Cell Proliferation by Upregulating CDC20 and TRIB3 in Non-small Cell Lung Cancer Cells (비소세포폐암 발달 과정에서 TFAP2C에 의해 발현되는 CDC20과 TRIB3의 원암유전자 기능에 관한 연구)

  • Kim, Dain;Do, Hyunhee;Kang, JiHoon;Youn, BuHyun;Kim, Wanyeon
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.645-652
    • /
    • 2019
  • Non-small cell lung cancer (NSCLC) has the infamous distinction of being the leading cause of global cancer-related death over the past decade, and novel molecular targets are urgently required to change this status. We previously conducted a microarray analysis to investigate the association of transcription factor activating enhancer-binding protein 2C (TFAP2C) with NSCLC and revealed its oncogenic roles in NSCLC development. In this study, to identify new biomarkers for NSCLC, we focused on several oncogenes from the microarray analysis that are transcriptionally regulated by TFAP2C. Here, the cell division cycle 20 (CDC20) and tribbles pseudokinase 3 (TRIB3) were subsequently found as potential potent oncogenes as they are positively regulated by TFAP2C. The results showed that the mRNA and protein levels of CDC20 and TRIB3 were down-regulated in two NSCLC cell lines (NCI-H292 and NCI-H838), which were treated with TFAP2C siRNA, and that the overexpression of either CDC20 or TRIB3 was responsible for promoting cell viability in both NSCLC cell lines. In addition, apoptotic levels of NCI-H292 and NCI-H838 cells treated with TFAP2C siRNA were found to be suppressed by the overexpression of either CDC20 or TRIB3. Together, these results suggest that CDC20 and TRIB3 are positively related to NSCLC tumorigenesis and that they should be considered as potential prognostic markers for developing an NSCLC therapy.

Development of Human Antibody Inhibiting RNase H Activity of Polymerase of Hepatitis B Virus Using Phage Display Technique (Phage Display 기법을 이용한 B형 간염 바이러스 Polymerase의 RNase H 활성을 억제하는 인간 단세포군 항체의 개발)

  • Lee, Seong-Rak;Song, Eun-Kyoung;Jeong, Young-Joo;Lee Young-Yi;Kim, Ik-Jung;Choi, In-Hak;Park, Sae-Gwang
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.16-22
    • /
    • 2004
  • Background: To develop a novel treatment strategy for hepatitis B virus infection, a major cause of liver chirosis and cancer, we aimed to make human monoclonal antibodies inhibiting RNase H activity of P protein playing in important role in HBV replication. In this regard, phage display technology was employed and demonstrated as an efficient cloning method for human monoclonal antibody. So this study analysed the usability of human monoclonal antibody as protein based gene therapy. Methods: RNase H of HBV was expressed as fusion protein with maltose binding protein and purified with amylose resin column. Single chain Fv (scFv) phage antibody library was constructed by PCR cloning using total RNAs of PBMC from 50 healthy volunteers. Binders to RNase H were selected with BIAcore 2000 from the constructed library, and purified as soluble antibody fragment. The affinity and sequences of selected antibody fragments were analyzed with BIAcore and ABI automatic sequencer, respectively. And finally RNase H activity inhibiting assay was carried out. Results: Recombinant RNase H expressed in E. coli exhibited an proper enzyme activity. Naive library of $4.46{\times}10^9cfu$ was screened by BIAcore 2000. Two clones, RN41 and RN56, showed affinity of $4.5{\times}10^{-7}M$ and $1.9{\times}10^{-7}M$, respectively. But RNase H inhibiting activity of RN41 was higher than that of RN56. Conclusion: We cloned human monoclonal antibodies inhibiting RNase H activity of P protein of HBV. These antibodies can be expected to be a good candidate for protein-based antiviral therapy by preventing a replication of HBV if they can be expressed intracellularly in HBV-infected hepatocytes.

Specific Expression of Interferon-γ Induced by Synergistic Activation Mediator-Derived Systems Activates Innate Immunity and Inhibits Tumorigenesis

  • Liu, Shuai;Yu, Xiao;Wang, Qiankun;Liu, Zhepeng;Xiao, Qiaoqiao;Hou, Panpan;Hu, Ying;Hou, Wei;Yang, Zhanqiu;Guo, Deyin;Chen, Shuliang
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1855-1866
    • /
    • 2017
  • The synergistic activation mediator (SAM) system can robustly activate endogenous gene expression by a single-guide RNA. This transcriptional modulation has been shown to enhance gene promoter activity and leads to epigenetic changes. Human $interferon-{\gamma}$ is a common natural glycoprotein involved in antiviral effects and inhibition of cancer cell growth. Large quantities of high-purity $interferon-{\gamma}$ are important for medical research and clinical therapy. To investigate the possibility of employing the SAM system to enhance endogenous human $interferon-{\gamma}$ with normal function in innate immunity, we designed 10 single-guide RNAs that target 200 bp upstream of the transcription start sites of the $interferon-{\gamma}$ genome, which could significantly activate the $interferon-{\gamma}$ promoter reporter. We confirmed that the system can effectively and highly activate $interferon-{\gamma}$ expression in several humanized cell lines. Moreover, we found that the $interferon-{\gamma}$ induced by the SAM system could inhibit tumorigenesis. Taken together, our results reveal that the SAM system can modulate epigenetic traits of non-immune cells through activating $interferon-{\gamma}$ expression and triggering JAK-STAT signaling pathways. Thus, this strategy could offer a novel approach to inhibit tumorigenesis without using exogenous $interferon-{\gamma}$.

Differential Roles of Vascular Endothelial Growth Factor Receptor-1 and Receptor-2 in Angiogenesis

  • Shibuya, Masabumi
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.469-478
    • /
    • 2006
  • Vascular endothelial growth factor (VEGF)-A, a major regulator for angiogenesis, binds and activates two tyrosine kinase receptors, VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). These receptors regulate physiological as well as pathological angiogenesis. VEGFR2 has strong tyrosine kinase activity, and transduces the major signals for angiogenesis. However, unlike other representative tyrosine kinase receptors which use the Ras pathway, VEGFR2 mostly uses the Phospholipase-$C{\gamma}$-Protein kinase-C pathway to activate MAP-kinase and DNA synthesis. VEGFR2 is a direct signal transducer for pathological angiogenesis including cancer and diabetic retinopathy, thus, VEGFR2 itself and the signaling appear to be critical targets for the suppression of these diseases. VEGFR1 plays dual role, a negative role in angiogenesis in the embryo most likely by trapping VEGF-A, and a positive role in adulthood in a tyrosine kinase-dependent manner. VEGFR1 is expressed not only in endothelial cells but also in macrophage-lineage cells, and promotes tumor growth, metastasis, and inflammation. Furthermore, a soluble form of VEGFR1 was found to be present at abnormally high levels in the serum of preeclampsia patients, and induces proteinurea and renal dysfunction. Therefore, VEGFR1 is also an important target in the treatment of human diseases. Recently, the VEGFR2-specific ligand VEGF-E (Orf-VEGF) was extensively characterized. Interestingly, the activation of VEGFR2 via VEGF-E in vivo results in a strong angiogenic response in mice with minor side effects such as inflammation compared with VEGF-A, suggesting VEGF-E to be a novel material for pro-angiogenic therapy.

Angelica polymorpha Maxim Induces Apoptosis of Human SH-SY5Y Neuroblastoma Cells by Regulating an Intrinsic Caspase Pathway

  • Rahman, Md. Ataur;Bishayee, Kausik;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.119-128
    • /
    • 2016
  • Angelica polymorpha Maxim root extract (APRE) is a popular herbal medicine used for treating stomachache, abdominal pain, stomach ulcers, and rheumatism; however the effect of APRE on cancer cells has not yet been explored. Here, we examined APRE cytotoxicity seen on target neuroblastoma cells (NB) using cell viability assays, DAPI visualization of fragmented DNA, and Western blotting analysis of candidate signaling pathways involved in proliferation and apoptosis. We demonstrated that APRE reduced cell viability in NB to a greater extent than in fibroblast cells. In addition, we found that APRE could inhibit the three classes of MAPK proteins and could also down-regulate the PI3K/AKT/GSK-$3{\beta}$ activity all being relevant for proliferation and survival. APRE could also up-regulate Bax expression and down-regulate Bcl-2 and Mcl-1. With APRE treatment, depolarization of mitochondria membrane potential and activation of caspase-3 was demonstrated in the SH-SY5Y cells. We could not found increased activity of death receptor and caspase-8 as markers of the extrinsic apoptosis pathway for the APRE treated cells. In presence of a caspase-3 siRNA and a pan-caspase inhibitor, APRE could not reduce the viability of NB cells to a significant degree. So we predicted that with APRE, the intrinsic pathway was solely responsible for inducing apoptosis as we also showed that the non-caspase autophagy pathway or ER stress-ROS mediated pathways were not involved. These findings demonstrate that an intrinsic mitochondria-mediated apoptosis pathway mediates the apoptotic effects of APRE on SH-SY5Y cells, and that APRE shows promise as a novel agent for neuroblastoma therapy.