• Title/Summary/Keyword: Novel Phase State

Search Result 173, Processing Time 0.026 seconds

Core Circuit Technologies for PN-Diode-Cell PRAM

  • Kang, Hee-Bok;Hong, Suk-Kyoung;Hong, Sung-Joo;Sung, Man-Young;Choi, Bok-Gil;Chung, Jin-Yong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.128-133
    • /
    • 2008
  • Phase-change random access memory (PRAM) chip cell phase of amorphous state is rapidly changed to crystal state above 160 Celsius degree within several seconds during Infrared (IR) reflow. Thus, on-board programming method is considered for PRAM chip programming. We demonstrated the functional 512Mb PRAM with 90nm technology using several novel core circuits, such as metal-2 line based global row decoding scheme, PN-diode cells based BL discharge (BLDIS) scheme, and PMOS switch based column decoding scheme. The reverse-state standby current of each PRAM cell is near 10 pA range. The total leak current of 512Mb PRAM chip in standby mode on discharging state can be more than 5 mA. Thus in the proposed BLDIS control, all bitlines (BLs) are in floating state in standby mode, then in active mode, the activated BLs are discharged to low level in the early timing of the active period by the short pulse BLDIS control timing operation. In the conventional sense amplifier, the simultaneous switching activation timing operation invokes the large coupling noise between the VSAREF node and the inner amplification nodes of the sense amplifiers. The coupling noise at VSAREF degrades the sensing voltage margin of the conventional sense amplifier. The merit of the proposed sense amplifier is almost removing the coupling noise at VSAREF from sharing with other sense amplifiers.

A novel ID-based multi-domain handover protocol for mesh points in WMNs

  • Zhang, Xue;Li, Guangsong;Han, Wenbao;Ji, Huifang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2512-2529
    • /
    • 2015
  • Wireless mesh networks (WMNs) provide an efficient and flexible method to the field of wireless networking, but also bring many security issues. A mesh point may lose all of its available links during its movement. Thus, the mesh point needs to handover to a new mesh point in order to obtain access to the network again. For multi-domain WMNs, we proposed a new ID-based signcryption scheme and accordingly present a novel ID-based handover protocol for mesh points. The mutual authentication and key establishment of two mesh points which belong to different trust domains can be achieved by using a single one-round message exchange during the authentication phase. The authentication server is not involved in our handover authentication protocol so that mutual authentication can be completed directly by the mesh points. Meanwhile, the data transmitted between the two mesh points can be carried by the authentication messages. Moreover, there are no restrictions on the PKG system parameters in our proposed multi-domain ID-based signcryption scheme so our handover scheme can be easily applied to real WMNs circumstances. Security of the signcryption scheme is proved in the random oracle model. It shows that our protocol satisfies the basic security requirements and is resistant to existing attacks based on the security of the signcryption. The analysis of the performance demonstrates that the protocol is efficient and suitable for the multi-domain WMNs environment.

Physical Layer Security Scheme Based on Polarization Modulation and WFRFT Processing for Dual-polarized Satellite Systems

  • Luo, Zhangkai;Wang, Huali;Zhou, Kaijie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5610-5624
    • /
    • 2017
  • A novel scheme based on polarization modulation and the weighted fractional Fourier transform (PM-WFRFT) is proposed in this paper to enhance the physical layer security of dual-polarized satellite systems. This scheme utilizes the amplitude and phase of the carrier as information-bearing parameters to transmit the normal signal and conceals the confidential information in the carrier's polarization state (PS). After being processed by WFRFT, the characteristics of the transmit signal (including amplitude, phase and polarization state) vary randomly and in nearly Gaussian distribution. This makes the signal very difficult for an eavesdropper to recognize or capture. The WFRFT parameter is also encrypted by a pseudo-random sequence and updated in real time, which enhances its anti-interception performance. Furthermore, to prevent the polarization-based impairment to PM-WFRFT caused by depolarization in the wireless channel, two components of the polarized signal are transmitted respectively in two symbol periods; this prevents any mutual interference between the two orthogonally polarized components. Demodulation performance in the system was also assessed, then the proposed scheme was validated with a simulated dual-polarized satellite system.

Efficient Congestion Control Utilizing Message Eavesdropping in Asynchronous Range-Based Localization

  • Choi, Hoon;Baek, Yunju;Lee, Ben
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.35-40
    • /
    • 2013
  • Asynchronous ranging is one practical method to implement a locating system that provides accurate results. However, a locating system utilizing asynchronous ranging generates a large number of messages that cause transmission delays or failures and degrades the system performance. This paper proposes a novel approach for efficient congestion control in an asynchronous range-based locating system. The proposed method significantly reduces the number of messages generated during the reader discovery phase by eavesdropping on other transmissions and improves the efficiency of ranging by organizing the tags in a hierarchical fashion in the measurement phase. Our evaluation shows that the proposed method reduces the number of messages by 70% compared to the conventional method and significantly improves the success rate of ranging.

Quantum well - quantum wire phase transiton of photonic quantum ring laser (양자우물 - 양자선 상전이 현상의 광양자테 레이저)

  • Kwon, O-Dae;Noik Pan;Kim, Junyeon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.38-39
    • /
    • 2003
  • The GaAs semiconductor whispering gallery modes, produced in the peripheral Rayleigh band region of W/sub Rayleigh/ = (${\Phi}$/2)( 1-n/sub eff/n), exhibit novel properties of ultralow thresholds open to nano-ampere regime associated with photonic quantum ring (PQR) production (Fig 1 (a)). The PQR phenomena are associated with a photonic field-driven phase transition of quantum well(QW)-to-quantum wire (QWR) and hence the photonic (non-de Broglie) quantum corral effects, on the Rayleigh cavity confined carriers in dynamic steady state, occur as schematically shown in Fig 1. (omitted)

  • PDF

A Load Compensator Based on One-Cycle Control with Plug-In Repetitive Control

  • Hu, Jian;Sun, Zhaohui;Ma, Hao;Chen, Guozhu
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.443-454
    • /
    • 2015
  • This study proposes a novel one-cycle control scheme with a plug-in repetitive controller for load compensator. The novelty of this scheme lies in the combination of high dynamics and the simplicity of a one-cycle controller and good steady-state harmonic suppression ability of the repetitive controller. In addition, the proposed scheme can reduce the effect of the harmonics in phase voltage for the existence of the repetitive controller. Finally, experimental results on a three-phase, four-wire, three-level load compensator are reported to validate the effectiveness of the proposed control scheme.

An FPGA-based Fully Digital Controller for Boost PFC Converter

  • Lai, Li;Luo, Ping
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.644-651
    • /
    • 2015
  • This paper introduces a novel digital one cycle control (DOCC) boost power factor correction (PFC) converter. The proposed PFC converter realizes the FPGA-based DOCC control approach for single-phase PFC rectifiers without input voltage sensing or a complicated two-loop compensation design. It can also achieve a high power factor and the operation of low harmonic input current ingredients over universal loads in continuous conduction mode. The trailing triangle modulation adopted in this approach makes the acquisition of the average input current an easy process. The controller implementation is based on a boost topology power circuit with low speed, low-resolution A/D converters, and economical FPGA development board. Experimental results demonstrate that the proposed PFC rectifier can obtain a PF value of up to 0.999 and a minimum THD of at least 1.9% using a 120W prototype.

Autopilot gain adjustment for flight control system with limiter (제한기가 있는 비행제어시스템의 자동조종 알고리듬 이득 조정)

  • 최동균;유재종;김종환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1864-1866
    • /
    • 1997
  • Uncertainties in the aerodynamic coefficients or time delay effects in implementing an autopilot algorithm can make a Flight Control System(FCS) unstable. When a FCS enters unstable state, the actuator or sensor limiters in FCS make the unstable system not diverge but be in the state of stable limit cycle. If an autopilot recognize the FCS to be in the stable limit cycle phenomenon, it woudl be better to adjust autopilot gains to stabilize the FCS. A novel method to stabilize a FCS using parameter estimation and maintenance of given phase margin is proposed. The method is applied to roll control loop and verified its performance.

  • PDF

A Robust PID control using SMC (SMC를 이용한 PMSM의 강인한 PID 제어)

  • Joo, Hyeong-Yeol;Park, Seung-Kyu;Kwak, Gun-Pyong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1735_1736
    • /
    • 2009
  • This paper discusses about a robust servo system applying PID control to PMSM. The system has robustness by Sliding Mode Controller. A novel sliding surface is defined by virtual state. This sliding surface has nominal dynamics of an original PID control system. So Sliding Mode Control(SMC) technique can be used with PID controller. Its design is based on the augmented system whose dynamics have a higher order than that of the original system. The reaching phase is removed by using an initial virtual state whitch makes the initial sliding function equal to zero.

  • PDF

Sliding Mode Control Using $H_2/H_{\infty}$ Controller ($H_2/H_{\infty}$ 제어기를 이용한 슬라이eld 모드제어)

  • Park, Seung-Kyu;Kwak, Gun-Pyong;Kim, Min-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.612-614
    • /
    • 1999
  • In this paper a novel sliding mode control is proposed by using $H_2/H_{\infty}$ controller. this technique is constructed based on the augmented system with a virtual state and make it has the dynamics of the original system and then $H_2/H_{\infty}$ controller has robust characteristics of sliding mode control for existing parameter uncertainty. The reaching phase is excluded by setting initial virtual state value appropriately.

  • PDF