• Title/Summary/Keyword: Nos2

Search Result 1,863, Processing Time 0.028 seconds

Anti-Inflammatory Effects of Abalone (Haliotis discus hannai) Viscera via Inhibition of ROS Production in LPS-Stimulated RAW 264.7 Cells

  • Shin, Tai-Sun;Choi, Kap Seong;Chun, Jiyeon;Kho, Kang-Hee;Son, Seon Ah;Shim, Sun-Yup
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.22-30
    • /
    • 2022
  • Haliotis discus hannai called abalone, is the valuable marine mollusks and the by-products of abalone processing are viscera. Brownish abalone male viscera (AMV), which have not been reported as having anti-inflammatory effects, was extracted with acetone and fractionated by different six acetone/hexane ratios (0, 10, 20, 30, 40, and 100%) using a silica column via in vitro ABTS and DPPH radical and nitric oxide (NO) production assay-guided fractionation. Among the fractions, the acetone/hexane ratio 40%, A40 exhibited the most potent radical scavenging activities and inhibition of lipopolysaccharide (LPS)-induced NO production without cytotoxicity. A40 inhibited LPS-induced intracellular reactive oxygen species (ROS) production in a dose-dependent manner. Western blot analysis revealed that A40 down-regulated the activation of NF-κB, MAPK (ERK 1/2, p-38, and JNK), and inflammatory enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. Moreover, this fraction inhibited the generation of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. These results suggested that AMV containing A40 with anti-inflammatory and anti-oxidantive effects, is the effective therapeutic and functional material for treating inflammatory disorders.

Study on the Potential of Development of Materials for Bone Disease Improvement of Cudrania tricuspidata Leaf and Achyranthes japonica Nakai Complex (꾸지뽕나무 잎과 우슬 복합물의 골 질환 개선 소재 개발가능성에 대한 연구)

  • Cheong, Kil-Ho;Kim, Dong-Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.35 no.5
    • /
    • pp.169-176
    • /
    • 2021
  • This study was conducted to suggest the Cudrania tricuspidata leaf and Achyranthes japonica Nakai Complex (CAC) possibility of use as a functional natural material for improving bone disease. Cudrania tricuspidata leaf and Achyranthes japonica Nakai were mixed in the same amount, extracted with hot water, and then powdered and used in the study. After, the cytotoxicity of CAC for osteoblasts (MG63 cell), osteoclasts (differentiated RAW264.7 cell), and macrophages (RAW264.7 cell) were evaluated by MTT assay, and ALP assay and TRAP assay were performed to confirm the differentiation capacity of osteoblasts and osteoclasts, respectively. In addition, the anti-inflammatory effect in macrophages was evaluated by ELISA, qRT-PCR, and western blot assay. CAC did not proliferated osteoblasts and osteoclasts, but increased ALP activity against osteoblasts differentiation and decreased TRAP activity against osteoclasts differentiation. CAC did not proliferated macrophages but decreased nitric oxide production. Also, decreased NOS2, IL1B, IL6, PTGS2, and TNFA gene expression, and JNK and p38 protein phosphorylation in a concentration-dependent manner, but ERK protein phosphorylation was not changed. As a result, CAC increased the differentiation and activation of osteoblasts, inhibited the differentiation and activation of osteoclasts, and regulated the expression of inflammatory cytokines in macrophages. Therefore, it is thought that CAC can be used as a functional natural material that prevents bone disease and has an anti-inflammatory effect.

Protective Effect of Paulownia tomentosa Fruits in an Experimental Animal Model of Acute Lung Injury

  • Kim, Seong-Man;Ryu, Hyung Won;Kwon, Ok-Kyoung;Min, Jae-Hong;Park, Jin-Mi;Kim, Doo-Young;Oh, Sei-Ryang;Lee, Seung Jin;Ahn, Kyung-Seop;Lee, Jae-Won
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.310-318
    • /
    • 2022
  • The fruits of Paulownia tomentosa (Thunb.) (PT) Steud. have been reported to exert a variety of biological activities. A previous study confirmed that compounds isolated from PT fruits (PTF) exerted anti-inflammatory effects on TNF-α-stimulated airway epithelial cells. However, there is no report on the protective effects of PTF on acute lung injury (ALI). Here, we examined the ameliorative effects of PTF in an experimental animal model of lipopolysaccharide (LPS)-induced ALI. In ALI mice, increased levels of inflammatory cell influx were confirmed in the lungs of mice, and an increase of microphage numbers, TNF-α, IL-6 and MCP-1 production and protein content were detected in mouse bronchoalveolar lavage fluid. However, these increases were significantly reversed with PTF pretreatment. In addition, PTF inhibited the increased expression of iNOS and COX-2 in the lungs of ALI mice. Furthermore, the upregulation of MAPK and NF-κB activation was decreased in the lungs of ALI mice by PTF. In the in vitro experiment, PTF pretreatment exerted an anti-inflammatory effect by inhibiting the secretion of nitric oxide, TNF-α and IL-6 in LPS-stimulated RAW264.7 macrophages. Collectively, these results indicated that PTF has ameliorative effects on airway inflammation in an experimental animal model of ALI.

Effect of Cheonggukjang Pills Product Containing Blueberry and Aronia in Mouse Inflammatory Bowel Disease (블루베리와 아로니아를 함유한 청국장 환 제품의 마우스 염증성 장질환 개선 효과)

  • Ha-Rim, Kim;Eun-Mi, Noh;Seung-Hyeon, Lee;Jong Hyun, Cho;Mi Hee, Park;Seon-Young, Kim
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.6
    • /
    • pp.513-520
    • /
    • 2022
  • The purpose of this study was to investigate the effect of Cheonggukjang pills with aronia and blueberries on dextran sulfate sodium (DSS)-induced colitis in mice. There have been several reports that Cheonggukjang is effective for intestinal health, but the efficacy of Cheonggukjang containing fruits has not yet been reported. In this study, we showed the effect of cheonggukjang pills with blueberries and aronia (CPBA) on DSS-induced colitis in BALB/c mice. CPBA was obtained from Soonchang Moonokae foods and orally administered once a day for 2 weeks before DSS treatment. Colitis was induced in mice by feeding 5% (w/v) DSS drinking water for 7 days. The results showed that CPBA treatment significantly alleviated DSS-induced disease activity index associated with a decrease in colon length. CPBA improved DSS-induced histological changes and intestinal epithelial barrier integrity in mice colon. In addition, CPBA administration significantly reduced the levels of DSS-mediated interferon-γ and interleukin-6 in serum and tumor necrosis factor-α in colon tissue. Moreover, the gene expression of COX-2 and iNOS, which are factors involved in inflammatory signaling, was significantly reduced by CPBA treatment. These results suggest that CPBA have a protective effect against DSS-induced mice colitis and may be a candidate for colitis treatment.

Anti-inflammatory and antioxidant activities of Sargassum horneri extract in RAW264.7 macrophages

  • Kim, Min Ju;Jo, Hee Geun;Ramakrishna, Chilakala;Lee, Seung-Jae;Lee, Dong-Sung;Cheong, Sun Hee
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.4
    • /
    • pp.45-53
    • /
    • 2021
  • [Purpose] In this study, we investigated whether a 70% ethanolic (EtOH) extract of Sargassum horneri had antioxidant and anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated macrophage-like RAW 264.7 cells. [Methods] The proximate composition, fatty acids, amino acids, and dietary fiber of S. horneri, various biologically active compounds, and antioxidant activity were analyzed. [Results] The DPPH and ABTS free radical scavenging activities, as well as the reduction power, of the S. horneri extract used here were significantly increased in a concentration-dependent manner. This indicates that S. horneri contains bioactive compounds, such as phenols and flavonoids, that have excellent antioxidant activity. The cellular viability and metabolic activity results confirmed that the extract had no discernible toxicity at concentrations up to 100 ㎍/mL. The levels of nitrites and cytokines (PGE2, TNF-α and IL-6), which mediate pro-inflammatory effect, were significantly inhibited by treatment with either 50 or 100 ㎍/mL S. horneri extract, whereas that of IL-1β was significantly inhibited by treatment with 100 ㎍/mL of the extract. Similarly, the expression of iNOS and COX-2 proteins also decreased according to 50 or 100 ㎍/mL extract concentrations. NF-κB binding to DNA was also significantly inhibited by treatment with 100 ㎍/mL of extract. [Conclusion] These results suggest that 70% EtOH extracts of S. horneri can relieve inflammation caused by disease or high intensity exercise.

The Experimental Study on Anti-inflammatory Effects of Eungapbang (EGB) (은갑방(銀甲方)이 염증 관련 cytokines의 유전자 발현과 생성량에 미치는 영향)

  • Lee, Bo-Ra;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.22 no.3
    • /
    • pp.83-98
    • /
    • 2009
  • Purpose: This study was performed to evaluate the anti-inflammatory effect of Eungapbang extract (EGB). Methods: To evaluate the anti-inflammatory effects of EGB, we nourished RAW 264.7 cell lines in the laboratory dish. Next, inflammatory cytokine concentrations were analyzed. Then, sera were prepared from blood after lipopolysaccharide (LPS) injection in chemically induced mouse models of intestinal inflammation, and Interleukin-1${\beta}$ (IL-1${\beta}$), interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-${\alpha}$) were measured using ELISA kits. Results: 1. EGB significantly suppressed the expression levels of IL-1${\beta}$ and NOS-II genes at 100, 50 and 10 ${\mu}g/m{\ell}$ concentrations, and IL-6, TNF-${\alpha}$ and COX-2 mRNAs at 100 and 50 ${\mu}g/m{\ell}$ concentrations. 2. EGB significantly reduced the production level of IL-1${\beta}$ and TNF-${\alpha}$ at 100${\mu}g/m{\ell}$ concentrations, and IL-6 at 100 and 50 ${\mu}g/m{\ell}$ concentrations. 3. EGB significantly decreased the production level of IL-1${\beta}$ and IL-6 in sera of acute inflammation induced mice. 4. EGB could suppress the expression level of IL-1${\beta}$ and IL-6 mRNA in spleen tissues in acute inflammation induced mice. Conclusion: On the basis of the above results, it is confirmed that the anti-inflammatory effects of EGB were recognized. Therefore, EGB is recommended as promising therapy for treatment of such ailments as pelvic inflammatory disease.

Korean Ginseng Berry Polysaccharide Enhances Immunomodulation Activities of Peritoneal Macrophages in Mice with Cyclophosphamide-Induced Immunosuppression

  • JeongUn Choi;Ju Hyun Nam;Weerawan Rod-in;Chaiwat Monmai;A-yeong Jang;SangGuan You;Woo Jung Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.840-847
    • /
    • 2023
  • Korean ginseng (Panax ginseng C. A. Meyer), a member of the Araliaceae family, is known as a traditional medicinal plant to have a wide range of health properties. Polysaccharides constitute a major component of Korean ginseng, and its berries exhibit immune-modulating properties. The purpose of this study was to investigate the immune effects of crude polysaccharide (GBPC) extracted from Korean ginseng berry on peritoneal macrophages in mice with cyclophosphamide (CY)- induced immunosuppression. BALB/c mice were divided into eight groups: normal control, normal control + CY, levamisole + CY, ginseng + CY, and four concentrations of 50, 100, 250, and 500 mg/kg BW/day of GBPC + CY. Mice were orally administered with samples for 10 days. Immunosuppression was established by treating mice with CY (80 mg/kg BW/day) through intraperitoneal injection on days 4 to 6. The immune function of peritoneal macrophages was then evaluated. Oral administration of 500 mg/kg BW/day GBPC resulted in proliferation, NO production, and phagocytosis at 100%, 88%, and 91%, respectively, close to the levels of the normal group (100%) of peritoneal macrophages. In CY-treated mice, GBPC of 50-500 mg/kg BW/day also dose-dependently stimulated the proliferation, NO production, and phagocytosis at 56-100%, 47-88%, and 53-91%, respectively, with expression levels of immune-associated genes, such as iNOS, COX-2, IL-1β, IL-6, and TNF-α, of about 0.32 to 2.87-fold, compared to those in the CY group. GBPC could be a potential immunomodulatory material to control peritoneal macrophages under an immunosuppressive condition.

Biological properties of fermented milk with fortified whey protein

  • Ki Whan Kim;Seok Han Ra;Gereltuya Renchinkhand;Woo Jin Ki;Myoung Soo Nam;Woan Sub Kim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.2
    • /
    • pp.281-294
    • /
    • 2023
  • As a byproduct obtained from cheese manufacture, whey protein was developed as a functional food that contains multi-functional proteins. In this study, the biochemical activity of fermented milk prepared by fortifying whey protein with excellent physiological activity was investigated. Immunoglobulin (IgG) content was higher in 10% fortified whey protein fermented milk than in the control. The viable cell counts were 20% higher in the fermented milk with 10% fortified whey protein than in the control group. The antibacterial effect of 10% fortified whey protein fermented milk compared to the control group was shown to be effective against four pathogenic microorganisms, Escherichia coli (KCTC1039), Pseudomonas aeruginosa 530, Salmonela Typhimurium (KCTC3216), and Staphylococcus aureus (KCTC1621). The antioxidant effect by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities wasincreased two-fold in 10% fortified whey protein fermented milk compared to the control. The 10% fortified whey protein fermented milk inhibited the expression of the inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor [TNF]-α, and induced nitric oxide synthase [iNOS]) in a concentration-dependent manner. In a piglets feeding test, the weight gain with 10% fortified whey protein fermented milk was increased by 18% compared to the control group, and no diarrhea symptoms appeared. Our results clearly demonstrated that 10% fortified whey protein fermented milk could be a useful functional ingredient for improving health.

Evaluation of Biological Activities of Invasive Alien Plants for Development of Functional Biomaterials

  • So Jin Kim;Su Hyeong Heo;Min Gun Kim;Kyung Hwan Boo;Chang Sook Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.112-112
    • /
    • 2022
  • This study aims to confirm the possibility of using the invasive alien plants in Jeju as a functional biomaterial. To achieve this purpose, 70% ethanol extract and solvent fractions were prepared for five invasive alien plants (Hypochaeris radicata, Rumex acetosella, Humulus japonicus Siebold & Zucc., Solanum viarum, Lactuca scariolar) and their antioxidant, antibacterial anti-inflammatory and anti-obesity effects were investigated. The DPPH radical scavenging activity of ethanol extract from invasive alien plants was shown in the order of Rumex acetosella > Hypochaeris radicata > Humulus japonicus. Antimicrobial activity of ethanol extract against food poisoning bacteria (4 species) and oral cavity-induced microorganisms (6 species) was measured. As a result, the extract of Humulus japonicus showed high antibacterial effects against food poisoning bacteria (E. coli, V. parahaemolyticus) and oral microbes (L. casei, S. epidermidis, E. faecalis). In LPS-induced RAW 264.7 cells, the anti-inflammatory effect of ethanol extract from invasive alien plants was investigated. As a result, the NO production inhibition activity was highest in the Rumex acetosella and the Humulus japonicus Siebold & Zucc. ethanol extract, and the NO production inhibition activity was concentration-dependent. In addition, the Rumex acetosella and the Humulus japonicus Siebold & Zucc. ethanol extract showed a concentration-dependent inhibitory effect on cytokine (IL-6) production. These extracts also showed inhibitory activity of COX-2, an inflammatory protein. This suggests that NO production inhibition activity by the extract of invasive alien plants is the result of inhibition of iNOS and COX-2 expression. Currently, organic solvent fractions of crude extract are manufactured and the investigation of active ingredients is continuing along with evaluation of biological activity such as anti-inflammatory. These results are expected to be a major data for the study on the separation and utilization of active ingredients with antioxidant, antibacterial and anti-inflammatory effects using foreign plant crude extract and solvent fractions, and are highly likely to be applied to the development of functional food and cosmetics materials.

  • PDF

Effects of Pogonatherum paniceum (Lamk) Hack extract on anti-mitochondrial DNA mediated inflammation by attenuating Tlr9 expression in LPS-induced macrophages

  • Rungthip Thongboontho;Kanoktip Petcharat;Narongsuk Munkong;Chakkraphong Khonthun;Atirada Boondech;Kanokkarn Phromnoi;Arthid Thim-uam
    • Nutrition Research and Practice
    • /
    • v.17 no.5
    • /
    • pp.827-843
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Mitochondrial DNA leakage leads to inflammatory responses via endosome activation. This study aims to evaluate whether the perennial grass water extract (Pogonatherum panicum) ameliorate mitochondrial DNA (mtDNA) leakage. MATERIALS/METHODS: The major bioactive constituents of P. paniceum (PPW) were investigated by high-performance liquid chromatography, after which their antioxidant activities were assessed. In addition, RAW 264.7 macrophages were stimulated with lipopolysaccharide, resulting in mitochondrial damage. Quantitative polymerase chain reaction and enzyme-linked immunosorbent assay were used to examine the gene expression and cytokines. RESULTS: Our results showed that PPW extract-treated activated cells significantly decrease reactive oxygen species and nitric oxide levels by reducing the p2phox and iNOS expression and lowering cytokine-encoding genes, including IL-6, TNF-α, IL-1β, PG-E2 and IFN-γ relative to the lipopolysaccharide (LPS)-activated macrophages. Furthermore, we observed that LPS enhanced the mtDNA leaked into the cytoplasm, increasing the transcription of Tlr9 and signaling both MyD88/Irf7-dependent interferon and MyD88/NF-κb p65-dependent inflammatory cytokine mRNA expression but which was alleviated in the presence of PPW extract. CONCLUSIONS: Our data show that PPW extract has antioxidant and anti-inflammatory activities by facilitating mtDNA leakage and lowering the Tlr9 expression and signaling activation.