• 제목/요약/키워드: Nos2

검색결과 1,874건 처리시간 0.031초

순환계에서 Nitric Oxide의 생리-병리학적 역할과 그 임상적 의의 (Nitric Oxide: The Pathophysiological Roles and Clinical Implications in Circulatory System)

  • 이광윤
    • Journal of Yeungnam Medical Science
    • /
    • 제13권2호
    • /
    • pp.159-172
    • /
    • 1996
  • 대기오염물질이면서 동시에 생체내 화학반응의 산물이기도 한 nitric oxide(NO)는 그 생체내 분포가 광범위하고 생리적 역할이 다양하여, 최근의 생명과학 분야에서 가장 크게 주목받는 몇가지 연구대상 중 하나이다. 세포에서의 NO 산생은 nitric oxide synthase (NOS)에 의해 촉매되는데, 이들은 brain form (bNOS, neuronal; nNOS, NOS I), inducible form (iNOS), 및 endothelial form(eNOS)로 구분되는데, 이중 bNOS(nNOS)와 eNOS는 inducible form에 대비되는 constitutive form(cNOS)에 해당하므로 각각 ncNOS 와 ecNOS로도 불리운다. NOS는 아미노산인 L-arginine을 산소와 결합시켜 L-citrulline으로 변환시키면서 NO를 유리하고, 이 NO는 세포내의 guanylate cyclase를 활성화하여 cyclic GMP를 생산하거나, superoxide(O2-) 및 수소이온과 차례로 결합하여 반응성이 매우 높은 수산화기(-OH)를 발생시켜 세포독작용을 유발하기도 한다. 정상상태에서 뇌혈관내피세포의 ecNOS로 부터 유리된 NO는 혈관을 확장시켜 신경세포에 대한 산소공급을 원활히 유지해 주지만, 순환장애를 일으켰을 때는 뇌조직내의 iNOS로부터 대량의 NO가 유출되어 신경세포의 손상을 가져온다. 호흡기에서는 NO가 기도평활근을 이완시키고 폐혈류를 개선하므로, 미숙아나 성인의 호흡장애시에 소량의 NO를 흡입시키면 oxygenation을 호전시킬 수 있다. 그러나 대기오염이나 흡연 등으로 대량의 NO를 흡입할 경우 치명적인 폐부종이나 methemoglobin혈종을 일으킬 수 있다. 순환계에서는 cNOS가 혈관을 확장시켜 조직의 혈류를 유지하는데 일익을 담당한다. 세균내 독소(lipopolysaccharide; LPS)나 각종 명역조절물질들이 혈관내피세포와 혈관평활근세포로 부터 과다한 NO를 유리시키면 혈압이 급격히 떨어져 순환허탈상태에 빠지게 된다. 심장에서는 관상혈관 내피세포의 eNOS가 심근의 혈류를 유지해 주지만 허혈이나 세균내독소 또는 면역조절물질 등에 의하여 심근세포나 침윤된 대식세포의 iNOS로 부터 과량의 NO가 유리되면 심근세포의 손상이 초래된다. 신장에서는 내피세포의 cNOS에 의하여 사구체여과가 조절되고 있는데, 세균내독소나 면역 조절물질 등에 의하여 사구체관막세포(mesangial cell)등의 iNOS로 부터 과량의 NO가 유리되면 신조직과 사구체의 손상을 초래한다. 위와 같이 대부분의 장기에서 ecNOS는 조직의 혈류를 유지하는 역할을 하며, iNOS는 애초 세균 등 침입자에 대한 세포독작용이 그 존재 목적이라고 풀이할 수 있겠으나 일종의 부작용으로 자체조직의 손상을 초래하게 되는 것으로 본다. 따라서 NO와 관련된 각종 병변의 치료를 위해서는 NOS의 비선택성 억제제인 arginine 유도체 보다는 iNOS에 대한 선택적 억제제인 S-methylisothiourea(SMT), aminoethylisothiourea(AETU), aminoguanidine (AMG), agmatine, L-canavanine, transforming growth factor b1(TGF-b1) 등의 사용을 검토해 보는 것이 타당할 것으로 사료된다.

  • PDF

Upregulation of Nitric Oxide Synthase Activity by All-trans Retinoic Acid and 13-cis Retinoic Acid in Human Malignant Keratinocytes

  • Moon, Ki-Young
    • 대한의생명과학회지
    • /
    • 제25권2호
    • /
    • pp.196-200
    • /
    • 2019
  • Effect of retinoids, i.e., all-trans retinoic acid and 13-cis retinoic acid, on the activity of nitric oxide synthase (NOS) was evaluated in human malignant keratinocytes to examine the possible correlation of retinoids with NOS activities. All-trans retinoic acid and 13-cis retinoic acid did not alter the nitric oxide (NO) production. However, in the presence of lipopolysaccharide (LPS, $1{\mu}g/mL$), they significantly increased NO release in a dose-dependent manner until 48 h at concentrations of $50{\sim}100{\mu}M$. The degree of upregulation of NO by all-trans retinoic acid and 13-cis retinoic acid increased up to 35% and 37%, respectively, compared to that by the control, which demonstrated the upregulation of LPS-inducible nitric oxide synthase (iNOS)-dependent generation of NO as well as showing a crucial link between retinoids-induced activity and NOS. Findings of this study now suggest that the upregulation of LPS-iNOS activity may be associated with modulation of retinoids-induced control of cellular developmental processes, which may produce new therapeutics of retinoids in the complexity of how NO affects human keratinocytes.

Polymorphic Lengths of Dinucleotide $(GT)^n$ Repeats in Upstream of Human nNOS Exon 1f Gene Play a Role in Modulating the nNOS Transcription: Clinical Implications

  • Shin, Mi-Kyung;Kim, Kyung-Nam;Kim, Chul-Eung;Lee, Sung-Keun;Kang, Ju-Hee;Park, Chang-Shin
    • Molecular & Cellular Toxicology
    • /
    • 제4권1호
    • /
    • pp.11-15
    • /
    • 2008
  • The expression of neuronal nitric oxide synthase (nNOS) is regulated by various spliced first exons (exon 1a-1i), sharing differentially common exon 2 in diverse human tissues. The highly complex structure and regulation of human nNOS gene gave limitations of information for the precise mechanism of nNOS regulation. In the present study, we report that the repeats of polymorphic dinucleotides $(GT)^nA(TG)^n$ repeats located in just upstream to the exon 1f in human nNOS gene play suppressive role in transcription, as shown in the characteristics of Z-DNA motif in other genes. In neuronal and trophoblast cells transfected transiently with luciferase construct without dinucleotide repeats at the 5'-flanking region of exon 1f in nNOS gene, the luciferase activity was increased markedly. However, the presence of the dinucleotide repeats dramatically suppressed the luciferase activity to the basal level, and which was dependent on the length of $(GT)^n$ and $(TG)^n$ repeats. More importantly, we found the polymorphisms in the length of dinucleotide repeats in human. Furthermore, we show for the first time here that there is a significant association of the lengths of polymorphic dinucleotide $(GT)^n$ and $(TG)^n$ repeats with the risk of schizophrenia.

수삼음경의 락혈 침자가 백서의 혈위 조직내 nNOS. NO와 조직 및 혈장 Norepinephrine의 변화에 미치는 영향 (The Changes of NO, nNOS, Norepinephrine by Acupucture at LU7, HT5, PC6 Acupoints in Rats)

  • 신욱;이유미;이경인;최동희;김미래;나창수;김선민;표병식;윤대환
    • Korean Journal of Acupuncture
    • /
    • 제33권2호
    • /
    • pp.75-83
    • /
    • 2016
  • Objectives : A previous study demonstrated that the connecting points of three yang meridians attenuated changes of nNOS, and Norepinephrine(NE) in rats. The current study investigated the changes in nNOS, NO and NE upon the needle insertion at varying depths at the connecting point of three yin meridians of the hand. Methods : Needles were inserted into rats, on both left and right sides of the connecting point, including the LU7, HT5 and PC6 acupoints which are three yin meridians of the hand. After insertion, needles were retained for five minutes. Each acupuncture groups were treated acupuncture at each acupoint and at the depths of superficial, middle and deep layer. After the retention, blood was drawn via cardiac puncture, and tissues of each point near meridian vessel was extracted to examine the changes in the expression of nNOS, NO and NE. Results : Compared with the superficial layer group, nNOS production significantly decreased in the middle and deep layer at LU7 acupoint group and in the deep layer at HT5, PC6 acupoint group. The tissue NE decreased in the deep layer on PC6 acupoint and the plasma NE increased at the middle layer at LU7 acupoint group but decreased at the deep layer on at LU7 acupoint group. Conclusions : Acupuncture at connecting points of three yin meridians of the hand can regulate the activities of nNOS, and NE.

Regulation of retinal angiogenesis by endothelial nitric oxide synthase signaling pathway

  • Ha, Jung Min;Jin, Seo Yeon;Lee, Hye Sun;Shin, Hwa Kyoung;Lee, Dong Hyung;Song, Sang Heon;Kim, Chi Dae;Bae, Sun Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권5호
    • /
    • pp.533-538
    • /
    • 2016
  • Angiogenesis plays an essential role in embryo development, tissue repair, inflammatory diseases, and tumor growth. In the present study, we showed that endothelial nitric oxide synthase (eNOS) regulates retinal angiogenesis. Mice that lack eNOS showed growth retardation, and retinal vessel development was significantly delayed. In addition, the number of tip cells and filopodia length were significantly reduced in mice lacking eNOS. Retinal endothelial cell proliferation was significantly blocked in mice lacking eNOS, and EMG-2-induced endothelial cell sprouting was significantly reduced in aortic vessels isolated from eNOS-deficient mice. Finally, pericyte recruitment to endothelial cells and vascular smooth muscle cell coverage to blood vessels were attenuated in mice lacking eNOS. Taken together, we suggest that the endothelial cell function and blood vessel maturation are regulated by eNOS during retinal angiogenesis.

杜冲의 토끼 음경해면체 평활근 이완효과 (Relaxation Effects of Eucomiae Cortex in Isolated Rabbit Corpus Cavernosum Smooth Muscle)

  • 박선영
    • 동의생리병리학회지
    • /
    • 제29권6호
    • /
    • pp.485-491
    • /
    • 2015
  • This study was aimed to investigate the relaxation effects of Eucomiae Cortex (EC) extract in isolated rabbit corpus cavernosum smooth muscle and its mechanism. To evaluate the relaxation of EC extract in rabbit corpus cavernosum, EC extract was treated in corporal strips which were precontracted with phenylephrine(PE). To study its mechanism, Nω-nitro-L-arginine (L-NNA) was pretreated after infuse of EC extract and compared with non-treated. In calcium chloride (Ca2+) -free krebs solution, EC extract and Ca2+ 1 mM were infused by turns after Ca2+ 1 mM was treated into corporal strips contracted by PE. Cell ability, nitric oxide (NO) and epithelial nitric oxide synthase (eNOS) on human umbilical vein endothelial cell (HUVEC) were measured by MTT assay, Griess reagent system and histochemical, immunohistochemical methods. EC extract showed a significant relaxation effects on the corporal strips, this effects were inhibited by pretreatment of L-NNA. EC extract inhibited the increase of contraction by Ca2+ influx in Ca2+-free krebs solution, and eNOS positive reaction in corpus cavernosum, NO production in HUVEC increased by treatment of EC extract. These result suggest that the relaxation effects of EC extract in isolated corpus cavernosum smooth muscle are involved in increase of eNOS and NO production, blocking of extracellular Ca2+ influx.

장뇌산삼의 $NF-{\kappa}B$ 억제를 통한 RAW 264.7 세포에서의 항염증 효과 (Wild Ginseng Exerts Anti-inflammatory Effects via $NF-{\kappa}B$ inactivation in RAW 264.7 Cells)

  • 안상현;김진택;신흥묵
    • 동의생리병리학회지
    • /
    • 제21권2호
    • /
    • pp.498-503
    • /
    • 2007
  • Inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 are important inflammatory mediators that have been implicated in pathogenesis of inflammation and certain types of human cancers. The present study was designed in order to determine whether Wild ginseng (Panax ginseng C. A. Mayer) could modulate $I{\kappa}B$-kinase (IKK), iNOS and COX-2 gene expression and its immune responses in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS, 1 ${\mu}/m{\ell}$). Wild ginseng extract dose-dependantly (*0.5 - 2 ${\mu}/m{\ell}$) decreased the LPS-induced IKK, iNOS and COX-2 mRNA expression and its immune responses. Moreover, it inhibited unclear factor (NF)-${\kappa}B$ immune response by LPS. These data be likely to indicate that Wild ginseng may acts as inflammatory regulator and may be possible to develope a useful agent for inflammatory diseases.

Taurine Activates ERK2 and Induces the Production of Nitric Oxide in Osteoblast-like UMR-106 Cells

  • Park, Sung-Youn;Kim, Harriet;Kim, Sung-Jin
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.145-145
    • /
    • 1998
  • In the present study, we have demonstrated that taurine could stimulate the production of nitric oxide and the activity of ERK2 (extracellular signal regulated protein kinase or pp42 MAP kinase). Nitric oxide(NO), the product of inducible nitric oxide synthase(iNOS), is known to be implicated in the metabolism of bone. ERK cascade plays a key role in the gene expression of iNOS in osteoblastic cell. We investigated whether taurine (l-20mM) could stimulate ERK2 activity, nitric oxide production, and inducible nitric oxide synthase in osteoblast-like UMR-106 cells. Nitric oxide was measured spectophotometrically as nitrite and the activation of ERK2 and iNOS was studied using Western 145 blot analysis. Taurine increased the production of nitric oxide in a dose-dependent manner and the effect was reached to a maximum at 10 mM. The activation of iNOS were consistent with NO levels. The tyrosine phosphorylation of ERK2 was increased by taurine in a time-dependent manner. The these result suggest that taurine might stimulate the production of nitric oxide in osteoblast-like cells by the activation of ERK2 and could regulate the metabolism of bone via nitric oxide.

  • PDF

Dendrobium moniliforme Stem Extract Inhibits Lipoteichoic Acid-Induced Inflammatory Responses by Upregulation of Heme Oxygenase-1

  • Lee, Young Ji;Kim, Ji-Hee;Kim, YoungHee
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1310-1317
    • /
    • 2018
  • The stems of Dendrobium moniliforme have been used in traditional herbal medicine for the treatment of fever and lack of body fluid in Korea. In this study, we investigated anti-inflammatory effects of the aqueous extract of D. moniliforme stems (DM) in response to lipoteichoic acid (LTA), a major constituent of the cell wall of Gram-positive bacteria. DM inhibited LTA-induced expression of a pro-inflammatory mediator inducible nitric oxide synthase (iNOS) in the murine macrophages. And DM induced expression of heme oxygenase-1 (HO-1) at the transcriptional level. Conversely, the knockdown of HO-1 expression by siRNA markedly reversed the inhibitory effects of DM on LTA-induced iNOS expression. We also demonstrated that nuclear translocation of Nrf2 was increased following treatment with DM. In addition, DM-mediated Nrf2 activation and HO-1 expression were suppressed by PI3K/Akt and p38 inhibitors; treatment with DM also resulted in phosphorylation of Akt and p38. These results suggest that DM inhibits the expression of iNOS in LTA-stimulated macrophages, and that these effects are mediated by the upregulation of HO-1 expression via PI3K/Akt/p38-Nrf2 signaling.