• Title/Summary/Keyword: Northern nucleoside

Search Result 4, Processing Time 0.019 seconds

The Increment of Purine Specific Sodium Nucleoside Cotransporter mRNA in Experimental Fibrotic Liver Induced by Bile Duct Ligation and Scission

  • Lee, Sung-Hee;Chae, Keon-Sang;Nan, Ji-Xing;Sohn, Dong-Hwan
    • Archives of Pharmacal Research
    • /
    • v.23 no.6
    • /
    • pp.613-619
    • /
    • 2000
  • We investigated the expression profiles of rat fibrotic liver induced by bile duct ligation and scission (BDL/S) using the 3'-directed cDNA libraries. The possibility that the 3'-directed cDNA library represents the mRNA population faithfully was examined by northern blots. During the northern analysis based on fibrotic liver expression profile, we found for the first time that purine specific sodium nucleoside cotransporter (SPNT) was upregulated in BDL/S-induced fibrotic liver. To determine whether the accumulation of bile juice could affect the expression of SPNT mRNA or not, we examined the change of SPNT mRNA expression at 3, 14, 28 days after BDL/S operation. No change in SPNT expression was observed in rat liver at 3 days after surgery. In contrast, there were significant increases in SPNT expression at 14 and 28 days after surgery. We also examined whether chronic liver damage affected SPNT mRNA expression. SPNT mRNA level was significantly increased in BDL/S-induced fibrotic rat liver, whereas no significant change was obserbed in fibrotic livers chronically exposed to carbon tetrachloride or dimethylnitrosamine. From the above results, although further study might be needed, it was considered that the increment of SPNT mRNA in BDL/S liver morphological compatibility to human was remarkable.

  • PDF

Cell- and Stage-Specific Expression of the Murine nm23-M5 Gene during Late Spermatogenesis and Spermiogenesis

  • Hwang Gyu-Chan;Ok Do-Won;Lee Mi-Suk;Kim Jin-Hoe
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.5-5
    • /
    • 2002
  • Nucleoside diphosphate kinases (NDPKs) are conserved through evolution and have been shown to be involved in various biological phenomena. By functional screening in yeast, we identified a new member of the NDPK family, ㎚23-M5, which encodes a 211-amino acid protein with 86% identify to the human homolog, ㎚23-H5. Northern blot analysis reveals that ㎚23-M5 encodes two transcripts of 0.8 and 0.7 kb, which are highly and specifically expressed in adult testis. Reverse transcriptase polymerase chain reaction analysis shows that nm23-M5 first appears in pachytene spermatocytes and increase chain reaction in abundance through subsequent stages. (omitted)

  • PDF

Stress Inducible Overexpression of Arabidopsis Nucleotide Diphosphate Kinase 2 Gene Confers Enhanced Tolerance to Salt Stress in Tall Fescue Plants

  • Lee, Ki-Won;Kim, Yong-Goo;Rahman, Md. Atikur;Kim, Dong-Hyun;Alam, Iftekhar;Lee, Sang-Hoon;Kim, Yun-Hee;Kwak, Sang-Soo;Yun, Dae-Jin;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.3
    • /
    • pp.223-230
    • /
    • 2017
  • Arabidopsis nucleoside diphosphate kinase 2 (AtNDPK2) is an upstream signaling molecule that has been shown to induce stress tolerance in plants. In this study, the AtNDPK2 gene, under the control of a stress-inducible SWPA2 promoter, was introduced into the genome of tall fescue (Festuca arundinacea Schreb.) plants. The induction of the transgene expression mediated by methyl viologen (MV) and NaCl treatments were confirmed by RT-PCR and northern blot analysis, respectively. Under salt stress treatment, the transgenic tall fescue plants (SN) exhibited lower level of $H_2O_2$ and lipid peroxidation accumulations than the non-transgenic (NT) plants. The transgenic tall fescue plants also showed higher level of NDPK enzyme activity compared to NT plants. The SN plants were survived at 300 mM NaCl treatment, whereas the NT plants were severely affected. These results indicate that stress-inducible overexpression of AtNDPK2 might efficiently confer the salt stress tolerance in tall fescue plants.