• 제목/요약/키워드: Normalized input data

검색결과 112건 처리시간 0.022초

Multi-Parameter Based Scheduling for Multi-user MIMO Systems

  • Chanthirasekaran, K.;Bhagyaveni, M.A.;Parvathy, L. Rama
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2406-2412
    • /
    • 2015
  • Multi-user multi-input multi-output (MU-MIMO) system has attracted the 4th generation wireless network as one of core technique for performance enrichment. In this system rate control is a challenging problem and another problem is optimization. Proper scheduling can resolve these problems by deciding which set of user and at which rate the users send their data. This paper proposes a new multi-parameter based scheduling (MPS) for downlink multi-user multiple-input multiple-output (MU-MIMO) system under space-time block coding (STBC) transmissions. Goal of this MPS scheme is to offer improved link level performance in terms of a low average bit error rate (BER), high packet delivery ratio (PDR) with improved resource utilization and service fairness among the user. This scheme allows the set of users to send data based on their channel quality and their demand rates. Simulation compares the MPS performance with other scheduling scheme such as fair scheduling (FS), normalized priority scheduling (NPS) and threshold based fair scheduling (TFS). The results obtained prove that MPS has significant improvement in average BER performance with improved resource utilization and fairness as compared to the other scheduling scheme.

다중선형 회귀모형과 천리안 지면온도를 활용한 토양수분 산정 연구 (Estimation of Soil Moisture Using Multiple Linear Regression Model and COMS Land Surface Temperature Data)

  • 이용관;정충길;조영현;김성준
    • 한국농공학회논문집
    • /
    • 제59권1호
    • /
    • pp.11-20
    • /
    • 2017
  • This study is to estimate the spatial soil moisture using multiple linear regression model (MLRM) and 15 minutes interval Land Surface Temperature (LST) data of Communication, Ocean and Meteorological Satellite (COMS). For the modeling, the input data of COMS LST, Terra MODIS Normalized Difference Vegetation Index (NDVI), daily rainfall and sunshine hour were considered and prepared. Using the observed soil moisture data at 9 stations of Automated Agriculture Observing System (AAOS) from January 2013 to May 2015, the MLRMs were developed by twelve scenarios of input components combination. The model results showed that the correlation between observed and modelled soil moisture increased when using antecedent rainfalls before the soil moisture simulation day. In addition, the correlation increased more when the model coefficients were evaluated by seasonal base. This was from the reverse correlation between MODIS NDVI and soil moisture in spring and autumn season.

Load-deflection analysis prediction of CFRP strengthened RC slab using RNN

  • Razavi, S.V.;Jumaat, Mohad Zamin;El-Shafie, Ahmed H.;Ronagh, Hamid Reza
    • Advances in concrete construction
    • /
    • 제3권2호
    • /
    • pp.91-102
    • /
    • 2015
  • In this paper, the load-deflection analysis of the Carbon Fiber Reinforced Polymer (CFRP) strengthened Reinforced Concrete (RC) slab using Recurrent Neural Network (RNN) is investigated. Six reinforced concrete slabs having dimension $1800{\times}400{\times}120mm$ with similar steel bar of 2T10 and strengthened using different length and width of CFRP were tested and compared with similar samples without CFRP. The experimental load-deflection results were normalized and then uploaded in MATLAB software. Loading, CFRP length and width were as neurons in input layer and mid-span deflection was as neuron in output layer. The network was generated using feed-forward network and a internal nonlinear condition space model to memorize the input data while training process. From 122 load-deflection data, 111 data utilized for network generation and 11 data for the network testing. The results of model on the testing stage showed that the generated RNN predicted the load-deflection analysis of the slabs in acceptable technique with a correlation of determination of 0.99. The ratio between predicted deflection by RNN and experimental output was in the range of 0.99 to 1.11.

디지털 시스템의 히로측정 평가방식에 관한 연구 (A Study on a Testability Evaluation Method for the Digital System)

  • 김용득
    • 대한전자공학회논문지
    • /
    • 제18권5호
    • /
    • pp.30-34
    • /
    • 1981
  • 본 논문은 디지탈 시스템의 회로측정 평가방식에 관한 연구로서, 조합논리회로와 순서논리회로에서의 회로복잡도와 부분회로에 대한 외부 단자로부터의 접근도를 구하고, 이 수로부터 측정평가방식을 논하였다. 따라서 회로설계 초에 이 평가방식을 적용해 봄으로써, 더 좋은 측정평가도를 얻도록 재설계되어져야 하며 이러한 설계방법은 시스템 유지보수에 매우 경제적이고 신뢰도를 높일 수 있다. 또한 스테픈슨-그레손의 방법과 본 방법의 회로측정 평가도를 비교하면 결과 값은 서로일치하면서 본 방법이 계산과정에서 매우 간편하였다.

  • PDF

신경회로망 기반 우리나라 산업안전시스템의 모델링 (Neural Network-based Modeling of Industrial Safety System in Korea)

  • 최기흥
    • 한국안전학회지
    • /
    • 제38권1호
    • /
    • pp.1-8
    • /
    • 2023
  • It is extremely important to design safety-guaranteed industrial processes because such process determine the ultimate outcomes of industrial activities, including worker safety. Application of artificial intelligence (AI) in industrial safety involves modeling industrial safety systems by using vast amounts of safety-related data, accident prediction, and accident prevention based on predictions. As a preliminary step toward realizing AI-based industrial safety in Korea, this study discusses neural network-based modeling of industrial safety systems. The input variables that are the most discriminatory relative to the output variables of industrial safety processes are selected using two information-theoretic measures, namely entropy and cross entropy. Normalized frequency and severity of industrial accidents are selected as the output variables. Our simulation results confirm the effectiveness of the proposed neural network model and, therefore, the feasibility of extending the model to include more input and output variables.

천리안 해양위성 2호(GOCI-II) 임무 초기 해무 탐지 산출: 해무의 광학적 특성 및 초기 검증 (The GOCI-II Early Mission Marine Fog Detection Products: Optical Characteristics and Verification)

  • 김민상;박명숙
    • 대한원격탐사학회지
    • /
    • 제37권5_2호
    • /
    • pp.1317-1328
    • /
    • 2021
  • 본 연구는 천리안 해양위성 2호(GOCI-II)를 활용하여 개발된 해무 탐지 알고리즘의 초기 결과에 대한 분석을 수행하였다. GOCI-II 해무 탐지 성능을 확인하기 위해 1호와 2호가 중복으로 관측한 2020년 10월-2021년 3월 사이에 발생한 해무 사례에 대해 광학적 특성 분석을 실시하였다. 해무 탐지 알고리즘에 입력자료로 사용되는 412 nm 밴드 레일리 산란 보정 반사도(Rayleigh-corrected reflectance; Rrc)와 정규화된 국소 표준 편차(Normalized Local Standard Deviation; NLSD)를 GOCI, GOCI-II 자료를 시공간 일치시킨 뒤 분석한 결과 412 nm 밴드 레일리 Rrc의 경우 0.01의 평균 제곱근 오차 (Root Mean Squared Error; RMSE)와 0.998의 상관계수(correlation coefficient)을 나타내고, NLSD의 경우 0.007의 RMSE, 0.798의 correlation을 나타낸다. 해무와 구름이 갖는 광학적 특성을 분석하기 위해 천리안 해양위성 2호의 밴드 별 Rrc 값을 확인하였다. 구름의 경우 넓은 영역에서 높은 반사도를 보인 반면, 해무의 경우 모든 밴드에서 구름에 비해 상대적으로 반사도가 낮고 좁은 영역에 분포한다. 실제 해무 사례에 대해 GOCI와 GOCI-II 해무 탐지 알고리즘을 비교한 결과 전반적인 해무 탐지 성능은 크게 차이가 없으나 높아진 공간 해상도의 영향으로 해무 경계면에서 공간적으로 더 세밀한 탐지가 가능했다. 종관기상관측소 시정계 자료와 비교 분석하여 초기 자료에 대한 신뢰도를 조사하였다. 추후 충분한 샘플 확보로 인한 안정적인 성능 검증, 실시간 구름 정보 교체를 통한 후처리 과정 개선, 에어로졸 자료 추가로 해무 오탐지 감소를 통해 해무 탐지 알고리즘의 성능 향상이 기대된다.

개선된 신경망 알고리즘을 이용한 영상 클러스터링 (Image Clustering using Improved Neural Network Algorithm)

  • 박상성;이만희;유헌우;문호석;장동식
    • 제어로봇시스템학회논문지
    • /
    • 제10권7호
    • /
    • pp.597-603
    • /
    • 2004
  • In retrieving large database of image data, the clustering is essential for fast retrieval. However, it is difficult to cluster a number of image data adequately. Moreover, current retrieval methods using similarities are uncertain of retrieval accuracy and take much retrieving time. In this paper, a suggested image retrieval system combines Fuzzy ART neural network algorithm to reinforce defects and to support them efficiently. This image retrieval system takes color and texture as specific feature required in retrieval system and normalizes each of them. We adapt Fuzzy ART algorithm as neural network which receive normalized input-vector and propose improved Fuzzy ART algorithm. The result of implementation with 200 image data shows approximately retrieval ratio of 83%.

저장탄약 신뢰성분류 인공신경망모델의 학습속도 향상에 관한 연구 (Study on Improving Learning Speed of Artificial Neural Network Model for Ammunition Stockpile Reliability Classification)

  • 이동녁;윤근식;노유찬
    • 한국산학기술학회논문지
    • /
    • 제21권6호
    • /
    • pp.374-382
    • /
    • 2020
  • 본 연구에서 저장탄약 신뢰성평가(ASRP: Ammunition Stockpile Reliability Program)의 데이터 특성을 고려하여 입력변수를 줄이는 정규화기법을 제안함으로써 분류성능의 저하 없이 저장탄약 신뢰성분류 인경신경망모델의 학습 속도향상을 목표로 하였다. 탄약의 성능에 대한 기준은 국방규격(KDS: Korea Defense Specification)과 저장탄약 시험절차서(ASTP: Ammunition Stockpile reliability Test Procedure)에 규정되어 있으며, 평가결과 데이터는 이산형과 연속형 데이터가 복합적으로 구성되어 있다. 이러한 저장탄약 신뢰성평가의 데이터 특성을 고려하여 입력변수는 로트 추정 불량률(estimated lot percent nonconforming) 또는 고장률로 정규화 하였다. 또한 입력변수의 unitary hypercube를 유지하기 위하여 최소-최대 정규화를 2차로 수행하는 2단계 정규화 기법을 제안하였다. 제안된 2단계 정규화 기법은 저장탄약 신뢰성평가 데이터를 이용하여 비교한 결과 최소-최대 정규화와 유사하게 AUC(Area Under the ROC Curve)는 0.95 이상이었으며 학습속도는 학습 데이터 수와 은닉 계층의 노드 수에 따라 1.74 ~ 1.99 배 향상되었다.

인공신경망을 활용한 최적 사출성형조건 예측에 관한 연구 (A Study on the Prediction of Optimized Injection Molding Condition using Artificial Neural Network (ANN))

  • 양동철;이준한;윤경환;김종선
    • 소성∙가공
    • /
    • 제29권4호
    • /
    • pp.218-228
    • /
    • 2020
  • The prediction of final mass and optimized process conditions of injection molded products using Artificial Neural Network (ANN) were demonstrated. The ANN was modeled with 10 input parameters and one output parameter (mass). The input parameters, i.e.; melt temperature, mold temperature, injection speed, packing pressure, packing time, cooling time, back pressure, plastification speed, V/P switchover, and suck back were selected. To generate training data for the ANN model, 77 experiments based on the combination of orthogonal sampling and random sampling were performed. The collected training data were normalized to eliminate scale differences between factors to improve the prediction performance of the ANN model. Grid search and random search method were used to find the optimized hyper-parameter of the ANN model. After the training of ANN model, optimized process conditions that satisfied the target mass of 41.14 g were predicted. The predicted process conditions were verified through actual injection molding experiments. Through the verification, it was found that the average deviation in the optimized conditions was 0.15±0.07 g. This value confirms that our proposed procedure can successfully predict the optimized process conditions for the target mass of injection molded products.

인공신경망을 활용한 사출성형품의 질량과 치수 예측에 관한 연구 (A Study on the Prediction of Mass and Length of Injection-molded Product Using Artificial Neural Network)

  • 양동철;이준한;김종선
    • Design & Manufacturing
    • /
    • 제14권3호
    • /
    • pp.1-7
    • /
    • 2020
  • This paper predicts the mass and the length of injection-molded products through the Artificial Neural Network (ANN) method. The ANN was implemented with 5 input parameters and 2 output parameters(mass, length). The input parameters, such as injection time, melt temperature, mold temperature, packing pressure and packing time were selected. 44 experiments that are based on the mixed sampling method were performed to generate training data for the ANN model. The generated training data were normalized to eliminate scale differences between factors to improve the prediction performance of the ANN model. A random search method was used to find the optimized hyper-parameter of the ANN model. After the ANN completed the training, the ANN model predicted the mass and the length of the injection-molded product. According to the result, average error of the ANN for mass was 0.3 %. In the case of length, the average deviation of ANN was 0.043 mm.