• Title/Summary/Keyword: Normalized difference vegetation index (NDVI)

Search Result 381, Processing Time 0.026 seconds

Selection of Optimal Vegetation Indices and Regression Model for Estimation of Rice Growth Using UAV Aerial Images

  • Lee, Kyung-Do;Park, Chan-Won;So, Kyu-Ho;Na, Sang-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.409-421
    • /
    • 2017
  • Recently Unmanned Aerial Vehicle (UAV) technology offers new opportunities for assessing crop growth condition using UAV imagery. The objective of this study was to select optimal vegetation indices and regression model for estimating of rice growth using UAV images. This study was conducted using a fixed-wing UAV (Model : Ebee) with Cannon S110 and Cannon IXUS camera during farming season in 2016 on the experiment field of National Institute of Crop Science. Before heading stage of rice, there were strong relationships between rice growth parameters (plant height, dry weight and LAI (Leaf Area Index)) and NDVI (Normalized Difference Vegetation Index) using natural exponential function ($R{\geq}0.97$). After heading stage, there were strong relationships between rice dry weight and NDVI, gNDVI (green NDVI), RVI (Ratio Vegetation Index), CI-G (Chlorophyll Index-Green) using quadratic function ($R{\leq}-0.98$). There were no apparent relationships between rice growth parameters and vegetation indices using only Red-Green-Blue band images.

Development of a Fusion Vegetation Index Using Full-PolSAR and Multispectral Data

  • Kim, Yong-Hyun;Oh, Jae-Hong;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.547-555
    • /
    • 2015
  • The vegetation index is a crucial parameter in many biophysical studies of vegetation, and is also a valuable content in ecological processes researching. The OVIs (Optical Vegetation Index) that of using multispectral and hyperspectral data have been widely investigated in the literature, while the RVI (Radar Vegetation Index) that of considering volume scattering measurement has been paid relatively little attention. Also, there was only some efforts have been put to fuse the OVI with the RVI as an integrated vegetation index. To address this issue, this paper presents a novel FVI (Fusion Vegetation Index) that uses multispectral and full-PolSAR (Polarimetric Synthetic Aperture Radar) data. By fusing a NDVI (Normalized Difference Vegetation Index) of RapidEye and an RVI of C-band Radarsat-2, we demonstrated that the proposed FVI has higher separability in different vegetation types than only with OVI and RVI. Also, the experimental results show that the proposed index not only has information on the vegetation greenness of the NDVI, but also has information on the canopy structure of the RVI. Based on this preliminary result, since the vegetation monitoring is more detailed, it could be possible in various application fields; this synergistic FVI will be further developed in the future.

Evaluation of NDVI Retrieved from Sentinel-2 and Landsat-8 Satellites Using Drone Imagery Under Rice Disease (드론 영상을 이용한 Sentinel-2, Landsat-8 위성 NDVI 평가: 벼 병해 발생 지역을 대상으로)

  • Ryu, Jae-Hyun;Ahn, Ho-yong;Na, Sang-Il;Lee, Byungmo;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1231-1244
    • /
    • 2022
  • The frequency of exposure of field crops to stress situations is increasing due to abnormal weather conditions. In South Korea, large-scale diseases in representative paddy rice cultivation area were happened. There are limits to field investigation on the crop damage due to large-scale. Satellite-based remote sensing techniques are useful for monitoring crops in cities and counties, but the sensitivity of vegetation index measured from satellite under abnormal growth of crop should be evaluated. The goal is to evaluate satellite-based normalized difference vegetation index (NDVI) retrieved from different spatial scales using drone imagery. In this study, Sentinel-2 and Landsat-8 satellites were used and they have spatial resolution of 10 and 30 m. Drone-based NDVI, which was resampled to the scale of satellite data, had correlation of 0.867-0.940 with Sentinel-2 NDVI and of 0.813-0.934 with Landsat-8 NDVI. When the effects of bias were minimized, Sentinel-2 NDVI had a normalized root mean square error of 0.2 to 2.8% less than that of the drone NDVI compared to Landsat-8 NDVI. In addition, Sentinel-2 NDVI had the constant error values regardless of diseases damage. On the other hand, Landsat-8 NDVI had different error values depending on degree of diseases. Considering the large error at the boundary of agricultural field, high spatial resolution data is more effective in monitoring crops.

Time series Analysis of Land Cover Change and Surface Temperature in Tuul-Basin, Mongolia Using Landsat Satellite Image (Landsat 위성영상을 이용한 몽골 Tuul-Basin 지역의 토지피복변화 및 지표온도 시계열적 분석)

  • Erdenesumbee, Suld;Cho, Gi Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.39-47
    • /
    • 2016
  • In this study analysis the status of land cover change and land degradation of Tuul-Basin in Mongolia by using the Landsat satellite images that was taken in year of 1990, 2001 and 2011 respectively in the summer at the time of great growth of green plants. Analysis of the land cover change during time series data in Tuul-Basin, Mongolia and NDVI (Normalized Difference Vegetation Index), SAVI (Soil-Adjusted Vegetation Index) and LST (Land Surface Temperature) algorithm are used respectively. As a result shows, there was a decrease of forest and green area and increase of dry and fallow land in the study area. It was be considered as trends to be a land degradation. In addition, there was high correlation between LST and vegetation index. The land cover change or vitality of vegetation which is taken in study area can be closely related to the temperature of the surface.

Agricultural drought monitoring using the satellite-based vegetation index (위성기반의 식생지수를 활용한 농업적 가뭄감시)

  • Baek, Seul-Gi;Jang, Ho-Won;Kim, Jong-Suk;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.305-314
    • /
    • 2016
  • In this study, a quantitative assessment was carried out in order to identify the agricultural drought in time and space using the Terra MODIS remote sensing data for the agricultural drought. The Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were selected by MOD13A3 image which shows the changes in vegetation conditions. The land cover classification was made to show only vegetation excluding water and urbanized areas in order to collect the land information efficiently by Type1 of MCD12Q1 images. NDVI and EVI index calculated using land cover classification indicates the strong seasonal tendency. Therefore, standardized Vegetation Stress Index Anomaly (VSIA) of EVI were used to estimated the medium-scale regions in Korea during the extreme drought year 2001. In addition, the agricultural drought damages were investigated in the country's past, and it was calculated based on the Standardized Precipitation Index (SPI) using the data of the ground stations. The VSIA were compared with SPI based on historical drought in Korea and application for drought assessment was made by temporal and spatial correlation analysis to diagnose the properties of agricultural droughts in Korea.

Vegetation Classification Using Seasonal Variation MODIS Data

  • Choi, Hyun-Ah;Lee, Woo-Kyun;Son, Yo-Whan;Kojima, Toshiharu;Muraoka, Hiroyuki
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.665-673
    • /
    • 2010
  • The role of remote sensing in phenological studies is increasingly regarded as a key in understanding large area seasonal phenomena. This paper describes the application of Moderate Resolution Imaging Spectroradiometer (MODIS) time series data for vegetation classification using seasonal variation patterns. The vegetation seasonal variation phase of Seoul and provinces in Korea was inferred using 8 day composite MODIS NDVI (Normalized Difference Vegetation Index) dataset of 2006. The seasonal vegetation classification approach is performed with reclassification of 4 categories as urban, crop land, broad-leaf and needle-leaf forest area. The BISE (Best Index Slope Extraction) filtering algorithm was applied for a smoothing processing of MODIS NDVI time series data and fuzzy classification method was used for vegetation classification. The overall accuracy of classification was 77.5% and the kappa coefficient was 0.61%, thus suggesting overall high classification accuracy.

Inter-Annual and Intra-Annual Variabilities of NDVI, LAI and Ts Estimated by AVHRR in Korea

  • Ha, Kyung-Ja;Oh, Hyun-mi;Kim, Ki-Young
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.2
    • /
    • pp.111-119
    • /
    • 2001
  • This study analyzes time variability of the normalized difference vegetation index (NDVI), the leaf area index (LAI) and surface temperature (Ts) estimated from AVHRR data collected from across the Korean peninsula from 1981 to 1994. In the present study, LAI defined as vegetation density, as a function of NDVI applied for the vegetation types and Ts defined by the split-window formulation of Becker and Li (1990) with emissivity of a function of NDVI, are used. Results of the inter-annual, intra-annual and intra-seasonal variabilities in Korea show: (1) Inter-annual variability of NDVI is generally larger in the southem and eastern parts of the peninsula than in the western part. This large variability results from the significant mean variation. (2) Inter-annual variability of Ts is larger in the areas of smaller NDVI. This result shows that the NDVI play a small role in emissivity. (3) Inter-annual variability of LAI is larger in the regions of higher elevation and urban areas. Changes in LAI are unlikely to be associated with NDVI changes. (4) Changes in NDVI and Ts are likely dominant in July and are relatively small in spring and fall. (5) Urban effect would be obvious on the time-varying properties of NDVI and Ts in Seoul and the northern part of Taejon, where NDVI decreases and Ts increases with a significant magnitude.

The Study of Applicability to Fixed-field Sensor for Normalized Difference Vegetation Index (NDVI) Monitoring in Cultivation Area

  • Lee, Kyung-Do;Na, Sang-Il;Baek, Shin-Chul;Jung, Byung-Joon;Hong, Suk-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.593-601
    • /
    • 2015
  • The NDVI (Normalized difference vegetation index) is used as indicators of crop growth situation in remote sensing. To measure or validate the NDVI, reliable NDVI sensors have been needed. We tested new fixed-field NDVI sensor, "SRS (Spectral Reflectance Sensor)" developed by Decagon Devices, during Kimchi cabbage growing season at the cultivation area located in Gochang, Gangneung and Taebaek in Korea from 2014 to 2015. The diurnal variation of NDVI measured by SRS (SRS NDVI) showed a slight ${\cap}$-profile shape and was affected by water on the sensor surface. This means that SRS NDVI around noontime is resonable, except rainy day. Comparisons were made between the SRS NDVI and NDVI of used widely mobile sensor (Cropcircle NDVI). The comparisons indicate that SRS NDVI are close to Cropcircle NDVI (R=0.99). SRS NDVI time series displayed change of the plant height and leaf width of Kimchi cabbage. An obvious exponential relationship is found between SRS NDVI and the plant height ($R^2{\geq}0.92$) and leaf width ($R^2{\geq}0.92$) of Kimchi cabbage. Thus, SRS NDVI will be used as indicator of crop growth situation and a very powerful tool for evaluation of remote sensing NDVI estimates and associated corrections.

Study on Correlation Between Timber Age, Image Bands and Vegetation Indices for Timber Age Estimation Using Landsat TM Image (Landsat TM 영상을 이용한 교목연령 추정에 영창을 주는 영상 밴드 및 식생지수에 관한 연구)

  • Lee, Jung-Bin;Heo, Joon;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.583-590
    • /
    • 2008
  • This study presents a correlation between timber Age, image bands and vegetation indices for timber age estimation. Basically, this study used Landsat TM images of three difference years (1994, 1994, 1998) and difference between Shuttle Radar Topography Mission (SRTM) and National Elevation Dataset (NED). Bands of 4, 5 and 7, Normalized Difference Vegetation Index (NDVI), Infrared Index (II), Vegetation Condition Index (VCI) and Soil Adjusted Vegetation Index (SA VI) were obtained from Landsat TM images. Tasseled cap - greenness and wetness images were also made by Tasseled cap transformation. Finally, analysis of correlation between timber age, difference between Shuttle Radar Topography Mission (SRTM) and National Elevation Dataset (NED), individual TM bands (4, 5, 7), Normalized Difference Vegetation Index (NDVI), Tasseled cap-Greenness, Wetness, Infrared Index (II), Vegetation Condition Index (VCI) and Soil Adjusted Vegetation Index (SAVI) using regression model. In this study about 1,992 datasets were analyzed. The Tasseled cap - Wetness, Infrared Index (II) and Vegetation Condition Index (VCI) showed close correlation for timber age estimation.

Consideration of NDVI and Surface Temperature Calculation from Satellite Imagery in Urban Areas: A Case Study for Gumi, Korea

  • Bhang, Kon Joon;Lee, Jin-Duk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • NDVI (Normalized Difference Vegetation Index) plays an important role in surface land cover classification and LST (Land Surface Temperature Extraction). Its characteristics do not full carry the information of the surface cover typically in urban areas even though it is widely used in analyses in urban areas as well as in vegetation. However, abnormal NDVI values are frequently found in urban areas. We, therefore, examined NDVI values on whether NDVI is appropriate for LST and whether there are considerations in NDVI analysis typically in urban areas because NDVI is strongly related to the surface emissivity calculation. For the study, we observed the influence of the surface settings (i.e., geometric shape and color) on NDVI values in urban area and transition features between three land cover types, vegetation, urban materials, and water. Interestingly, there were many abnormal NDVI values systematically derived by the surface settings and they might influence on NDVI and eventually LST. Also, there were distinguishable transitions based on the mixture of three surface materials. A transition scenario was described that there are three transition types of mixture (urban material-vegetation, urban material-water, and vegetation-water) based on the relationship of NDVI and LST even though they are widely distributed.