Journal of the Korean Association of Geographic Information Studies
/
v.11
no.4
/
pp.94-100
/
2008
Recently, global warming for climate system is a crucial issue over the world and it brings about severe climate change, abnormal temperature, a downpour, a drought, and so on. Especially, a drought over the earth surface accelerates desertification which has been advanced over the several years mainly originated from a climatic change. The objective of this study is to detect variation of vegetation water condition around China and Mongolia desert by using satellite data having advantage in observing surface biological system. In this study, we use SPOT/VEGETATION satellite image to calculate NDWI (Normalized Difference Water Index) around study area desert for monitoring of status of vegetation characteristics. The vegetation water status index from remotely sensing data is related to desertification since dry vegetation is apt to desertify. We can infer vegetation water status using NDWI acquired by NIR (Near infrared) and SWIR (Short wave infrared) bands from SPOT/VGT. The consequence is that NDWI decreased around desert from 1999 to 2006. The areas that NDWI was decreased are located in the northeast of Mongolian Gobi desert and the southeast of China Taklamakan desert.
Journal of Korean Society for Geospatial Information Science
/
v.24
no.3
/
pp.39-47
/
2016
In this study analysis the status of land cover change and land degradation of Tuul-Basin in Mongolia by using the Landsat satellite images that was taken in year of 1990, 2001 and 2011 respectively in the summer at the time of great growth of green plants. Analysis of the land cover change during time series data in Tuul-Basin, Mongolia and NDVI (Normalized Difference Vegetation Index), SAVI (Soil-Adjusted Vegetation Index) and LST (Land Surface Temperature) algorithm are used respectively. As a result shows, there was a decrease of forest and green area and increase of dry and fallow land in the study area. It was be considered as trends to be a land degradation. In addition, there was high correlation between LST and vegetation index. The land cover change or vitality of vegetation which is taken in study area can be closely related to the temperature of the surface.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.31
no.6_2
/
pp.521-527
/
2013
Rule set is an important step which impacts significantly on accuracy of object-oriented classification result. Therefore, this paper proposes a rule set to extract land cover from Landsat Thematic Mapper (TM) imagery acquired in Donganh, Hanoi, Vietnam. The rules were generated to distinguish five classes, namely river, pond, residential areas, vegetation and paddy. These classes were classified not only based on spectral characteristics of features, but also indices of water, soil, vegetation, and urban. The study selected five indices, including largest difference index max.diff; length/width; hue, saturation and intensity (HSI); normalized difference vegetation index (NDVI) and ratio vegetation index (RVI) based on membership functions of objects. Overall accuracy of classification result is 0.84% as the rule set is used in classification process.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.32
no.6
/
pp.607-615
/
2014
RVI (Radar Vegetation Index) has shown some promise in the vegetation fields, but its relationship with MVI (Multispectral Vegetation Index) is not known in the context of various land covers. Presented herein is a comparative analysis of the MVI values derived from the LANDSAT-8 and RVI values originating from the RADARSAT-2 quad-polarimetric SAR (Synthetic Aperture Radar) data. Among the various multispectral vegetation indices, NDVI (Normalized Difference Vegetation Index) and SAVI (Soil Adjusted Vegetation Index) were used for comparison with RVI. Four land covers (urban, forest, water, and paddy field) were compared, and the patterns were investigated. The experiment results demonstrated that the RVI patterns of the four land covers are very similar to those of NDVI and SAVI. Thus, during bad weather conditions and at night, the RVI data could serve as an alternative to the MVI data in various application fields.
Journal of Korean Society for Geospatial Information Science
/
v.23
no.4
/
pp.11-16
/
2015
Spatial and temporal information on near-surface air temperature is important for understanding global warming and climate change. In this study, the estimation algorithm of near-surface air temperature in Korea was developed by using spatial homogeneous surface information obtained from satellite remote sensing observations. Based on LST(Land Surface Temperature), NDWI(Normalized Difference Water Index) and NDVI(Normalized Difference Vegetation Index) as independent variables, the multiple regression model was proposed for the estimation of near-surface air temperature. The different regression constants and coefficients for warm and cold seasons were calculated for considering regional climate change in Korea. The near-surface air temperature values estimated from the multiple regression algorithm showed reasonable performance for both warm and cold seasons with respect to observed values (approximately $3^{\circ}C$ root mean-square error and nearly zero mean bias). Thus;the proposed algorithm using remotely sensed surface observations and the approach based on the classified warm and cold seasons may be useful for assessment of regional climate temperature in Korea.
In this paper, we derive i) a function to estimate snow cover fraction (SCF) from a MODIS satellite image that has a wide observational area and short re-visit period and ii) a function to determine snow depth from the estimated SCF map. The SCF equation is important for estimating the snow depth from optical images. The proposed SCF equation is defined using the Gaussian function. We found that the Gaussian function was a better model than the linear equation for explaining the relationship between the normalized difference snow index (NDSI) and the normalized difference vegetation index (NDVI), and SCF. An accuracy test was performed using 38 MODIS images, and the achieved root mean square error (RMSE) was improved by approximately 7.7 % compared to that of the linear equation. After the SCF maps were created using the SCF equation from the MODIS images, a relation function between in-situ snow depth and MODIS-derived SCF was defined. The RMSE of the MODIS-derived snow depth was approximately 3.55 cm when compared to the in-situ data. This is a somewhat large error range in the Republic of Korea, which generally has less than 10 cm of snowfall. Therefore, in this study, we corrected the calculated snow depth using the relationship between the measured and calculated values for each single image unit. The corrected snow depth was finally recorded and had an RMSE of approximately 2.98 cm, which was an improvement. In future, the accuracy of the algorithm can be improved by considering more varied variables at the same time.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.36
no.6
/
pp.433-442
/
2018
The reservoir area is defined as the area surrounded by the planned flood level of the dam or the land under the planned flood level of the dam. In this study, supervised classification based on RF (Random Forest), which is a representative machine learning technique, was performed to detect cropland in the reservoir area. In order to classify the cropland in the reservoir area efficiently, the GLCM (Gray Level Co-occurrence Matrix), which is a representative technique to quantify texture information, NDWI (Normalized Difference Water Index) and NDVI (Normalized Difference Vegetation Index) were utilized as additional features during classification process. In particular, we analyzed the effect of texture information according to window size for generating GLCM, and suggested a methodology for detecting croplands in the reservoir area. In the experimental result, the classification result showed that cropland in the reservoir area could be detected by the multispectral, NDVI, NDWI and GLCM images of UAV, efficiently. Especially, the window size of GLCM was an important parameter to increase the classification accuracy.
The role of remote sensing in phenological studies is increasingly regarded as a key in understanding large area seasonal phenomena. This paper describes the application of Moderate Resolution Imaging Spectroradiometer (MODIS) time series data for vegetation classification using seasonal variation patterns. The vegetation seasonal variation phase of Seoul and provinces in Korea was inferred using 8 day composite MODIS NDVI (Normalized Difference Vegetation Index) dataset of 2006. The seasonal vegetation classification approach is performed with reclassification of 4 categories as urban, crop land, broad-leaf and needle-leaf forest area. The BISE (Best Index Slope Extraction) filtering algorithm was applied for a smoothing processing of MODIS NDVI time series data and fuzzy classification method was used for vegetation classification. The overall accuracy of classification was 77.5% and the kappa coefficient was 0.61%, thus suggesting overall high classification accuracy.
The vegetation activity of the Korean peninsula has been monitored temporal variations through a satellite remote sensing and the vegetation index was used to set up the vegetation data map of Korea. The AVHRR data sent by the NOAA-14 satellite was collected for 8 months between April and November, 1997 to calculate the normalized difference vegetation index(NDVI) which was combined the MVC(Maximum Value Composite). Then this NDVI composite map was prepared to review the temporal variations in the vegetation activity. The NDVI has been subject to the unsupervised classification for the growing season between May and October. And the vegetation type is divided into five classes ; urban, bare soil, grass, farming land, deciduous forest and coniferous forest. The unsupervised classificaion of vegetation distribution in the Korean Peninsula shows that the urban and bare soil take 4.14% of total national area, grass 4.49%, farming land 27.54%, deciduous forest 25.61% and coniferous forest 38.22%.
Urban expansion results in raising the temperature in the city, which can cause social, economic and physical damage. In order to prevent the urban heat island and reduce the urban land surface temperature, it is important to quantify the cooling effect of the features of the urban space. Therefore, in order to understand the relationship between each object of land cover and the land surface temperature in Seoul, the land cover map was classified into 6 classes. And the correlation and multiple regression analysis between land surface temperature and the area of objects, perimeter/area, and normalized difference vegetation index was analyzed. As a result of the analysis, the normalized difference vegetation index showed a high correlation with the land surface temperature. Also, in multiple regression analysis, the normalized difference vegetation index exerted a higher influence on the land surface temperature prediction than other coefficients. However, the explanatory power of the derived models as a result of multiple regression analysis was low. In the future, if continuous monitoring is performed using high-resolution MIR Image from KOMPSAT-3A, it will be possible to improve the explanatory power of the model. By utilizing the relationship between such various land cover types considering vegetation vitality of green areas with that of land surface temperature within urban spaces for urban planning, it is expected to contribute in reducing the land surface temperature in urban spaces.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.