• 제목/요약/키워드: Normalized difference red edge

검색결과 14건 처리시간 0.02초

무인기 기반 동계 사료작물의 건물수량 예측을 위한 최적 식생지수 선정 (Selection of Optimal Vegetation Indices for Predicting Winter Crop Dry Matter Based on Unmanned Aerial Vehicle)

  • 신재영;이준민;양승학;임경재;이효진
    • 한국초지조사료학회지
    • /
    • 제40권4호
    • /
    • pp.196-202
    • /
    • 2020
  • 본 연구는 동계사료작물의 무인기기반 생육모니터링을 위하여 호밀, 총체보리, IRG를 대상으로 다중분광영상으로 건물수량을 예측하기 위한 최적식생지수를 테스트하였다. 2019년 2월부터 4월까지 나주의 실경작지에서 무인기 다중분광카메라로 분광영상을 수집하여 4종류의 식생지수(Normalized Difference Vegetation Index; NDVI, Green Normalized Difference Vegetation Index; GNDVI, Normalized Green Red Difference Index; NGRDI and Normalized Difference Red Edge Index; NDREI)를 산출하고 지상에서 건물수량을 조사하여 식생지수와 건물수량의 상관관계를 조사하였다. 호밀, 총체보리, IRG에 대하여 건물수량과 NDVI의 상관관계(R2)는 0.91~0.92, GNDVI는 0.92~0.94, NGRDI는 0.71~0.85, NDREI는 0.84~0.91로 GNDVI가 가장 효과적이었다.

Analyzing Soybean Growth Patterns in Open-Field Smart Agriculture under Different Irrigation and Cultivation Methods Using Drone-Based Vegetation Indices

  • Kyeong-Soo Jeong;Seung-Hwan Go;Kyeong-Kyu Lee;Jong-Hwa Park
    • 대한원격탐사학회지
    • /
    • 제40권1호
    • /
    • pp.45-56
    • /
    • 2024
  • Faced with aging populations, declining resources, and limited agricultural productivity, rural areas in South Korea require innovative solutions. This study investigated the potential of drone-based vegetation indices (VIs) to analyze soybean growth patterns in open-field smart agriculture in Goesan-gun, Chungbuk Province, South Korea. We monitored multi-seasonal normalized difference vegetation index (NDVI) and the normalized difference red edge (NDRE) data for three soybean lots with different irrigation methods (subsurface drainage, conventional, subsurface drip irrigation) using drone remote sensing. Combining NDVI (photosynthetically active biomass, PAB) and NDRE (chlorophyll) offered a comprehensive analysis of soybean growth, capturing both overall health and stress responses. Our analysis revealed distinct growth patterns for each lot. LotA(subsurface drainage) displayed early vigor and efficient resource utilization (peaking at NDVI 0.971 and NDRE 0.686), likely due to the drainage system. Lot B (conventional cultivation) showed slower growth and potential limitations (peaking at NDVI 0.963 and NDRE 0.681), suggesting resource constraints or stress. Lot C (subsurface drip irrigation) exhibited rapid initial growth but faced later resource limitations(peaking at NDVI 0.970 and NDRE 0.695). By monitoring NDVI and NDRE variations, farmers can gain valuable insights to optimize resource allocation (reducing costs and environmental impact), improve crop yield and quality (maximizing yield potential), and address rural challenges in South Korea. This study demonstrates the promise of drone-based VIs for revitalizing open-field agriculture, boosting farm income, and attracting young talent, ultimately contributing to a more sustainable and prosperous future for rural communities. Further research integrating additional data and investigating physiological mechanisms can lead to even more effective management strategies and a deeper understanding of VI variations for optimized crop performance.

무인기 기반 다중분광 영상을 이용한 벼 쓰러짐 영역의 특성 분석 (Comparative Analysis of Rice Lodging Area Using a UAV-based Multispectral Imagery)

  • 문현동;류재현;나상일;장선웅;신서호;조재일
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.917-926
    • /
    • 2021
  • 벼 쓰러짐은 벼농사의 대표적인 기상재해 피해로써 강한 바람과 강우로 발생한다. 원격탐사 기법은 넓은 지역의 벼 쓰러짐을 효과적으로 탐지하기에 적절한 방법이다. 실제로 벼 쓰러짐은 벼 키가 최대인 생육 시기에 주로 발생하여 군락의 큰 구조적 변화를 불러오기 때문에 분광 반사도 차이를 야기한다. 따라서, 본고에서는 나주에 위치한 전남농업기술원의 2020년 태풍에 의한 논벼 피해를 444 nm부터 842 nm까지 10개 밴드로 구성된 카메라 영상으로 분석하였다. 드론 영상마다 벼 쓰러짐 피해를 받은 영역과 벼 쓰러짐 피해가 없는 영역으로 구분하여 벼 쓰러짐 영역의 분광 반사도 특성 차이와 식생 탐지에 주로 사용되는 식생지수인 NDVI(Normalized Difference Vegetation Index), NDRE (Normalized Difference Red Edge), CCI (Chlorophyll Carotenoid Index)의 변화를 살펴보았다. 반사도 값의 변화는 밴드6(668 nm)에서 가장 적었으며, 이를 중심으로 밴드 파장이 감소와 증가할수록 일반 논벼 보다 쓰러짐 영역 반사도가 커졌다. 또한, 쓰러진 벼를 묶어 세운 복구 지역은 대부분의 밴드에 걸쳐 반사도가 크게 감소함을 볼 수 있었다. NDVI와 NDRE는 벼 쓰러짐 영역에 대해 민감하게 반응하였으나, 그 반응 대상 및 정도는 서로 달랐다. 본 연구의 결과는 향후 드론과 위성을 이용한 벼 쓰러짐 피해 조사 알고리즘에 기여될 것으로 기대한다.

하천 녹조 모니터링을 위한 드론 다중분광영상의 분광지수 적용성 평가 (Application of Spectral Indices to Drone-based Multispectral Remote Sensing for Algal Bloom Monitoring in the River)

  • 최은영;정경미;윤종수;장정희;김미정;이호중
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.419-430
    • /
    • 2021
  • 신속하게 면단위(2-Dimension)로 하천의 녹조 우심지역을 관측하기 위해 드론 다중분광영상을 이용한 분석기법을 연구하였다. 드론은 항공기나 위성에 비해 관측 면적이 작지만 높은 공간해상도와 현장접근 및 데이터 획득 용이성, 대기에 의한 간섭 저감, 다중분광센서를 이용한 신속한 자료처리로 녹조 모니터링 효율성을 향상시킬 수 있을 것으로 보고 있다. 이러한 드론의 다중분광센서 영상으로 하천의 녹조발생 현황을 모니터링하기 위해 광합성 색소에 의한 분광특성을 반영하는 분광지수들을 비교 분석하고 Chlorophyll-a(Chl-a) 농도 추정식에 적용 가능성을 평가하였다. 주로 Red-edge 밴드를 포함하는 분광지수가 Chl-a 농도와 높은 상관성을 보였는데, 그 중에서도 3-Band Model(3BM), Normalized Difference Chlorophyll Index(NDCI)가 각각 비슷한 수준으로 가장 높은 통계적 유의성(R2=0.86, RMSE=7.5)을 나타내었다. NDCI의 경우에는 두 개의 분광밴드만 적용되는 간결한 수식과 정규화된(Normalizing) 결과값으로 신속하고 표준화된 프로세싱이 가능할 것으로 보이며 드론 녹조 모니터링에서 적용성이 높을 것으로 기대된다. 3BM의 경우에는 Red-edge 영역에서 두 개의 파장대를 적용해야 하나 본 연구에서 사용한 드론 센서에는 한 개의 Red-edge 밴드만 포함되어서 근적외선으로 대체하여 수식을 적용하였는데 Red-edge 파장영역이 세밀한 분광센서를 활용할 경우에 NDCI 보다 높은 정확도를 나타낼 수 있을 것으로 보인다.

농업지역 소하천의 수질 특성 파악을 위한 UAV 영상 활용 가능성 분석 (An Analysis on the Usability of Unmanned Aerial Vehicle(UAV) Image to Identify Water Quality Characteristics in Agricultural Streams)

  • 김성현;문병현;송봉근;박경훈
    • 한국지리정보학회지
    • /
    • 제22권3호
    • /
    • pp.10-20
    • /
    • 2019
  • 전 세계적으로 기후변화로 인한 불규칙적인 강우의 영향으로 수계에서는 비점오염에 의한 부영양화, 녹조현상 등이 빈번하게 발생되고 있다. 특히 이러한 수계오염은 원활한 용수공급을 위한 저수지 유속이 느린 하천이 인접해있고, 축사 퇴비 등이 다수 분포해 있어 비점오염의 수계유입이 쉬운 농업지역이 취약하다. 따라서, 본 연구에서는 UAV(Unmanned Aerial Vehicle) 영상과 수계부영양화를 발생시키는 총인 총질소, 녹조발생과 간접적인 연관성이 있는 클로로필-a의 상관분석을 통해 소하천 수질 특성 파악에 UAV의 활용 가능성을 분석하였다. 분석에는 대상지인 양천, 함양위천 소권역에서 수집한 다중분광 영상 및 녹조탐지에 사용되는 식생지수 NDVI(Normalized difference vegetation index), NDRE(Normalized Difference Red edge), CIRE(Chlorophyll Index Red edge)를 활용하였다. 채수지점에 대한 영상값과 수질분석 값의 상관관계를 분석한 결과 총인은 유의수준 0.05 이내에서 CIRE(0.66)와 클로로필-a는 Blue(-0.67), Green(-0.66), NDVI(0.75), NDRE(0.67), CIRE(0.74)와 상관관계를 보였다. 총질소는 유의수준 0.05에서 Red(-0.64), Red edge(-0.64), NIR(-0.72)와 상관관계를 보였다. 본 연구결과를 통해 UAV 기반 다중분광 영상과 수질오염 발생 인자에 대한 유의미한 상관관계를 확인하였고, 녹조탐지에 사용하는 식생지수의 경우 클로로필-a뿐만 아니라 총인의 파악에도 활용할 수 있는 가능성을 확인하였다. 이는 농업지역의 비점오염 관리우심 지역 선정 등 관리대책을 마련하는데 유의미한 자료로 사용될 수 있을 것으로 판단된다.

울폐산림의 엽면적지수 추정을 위한 적색경계 밴드의 효과 (Effect of Red-edge Band to Estimate Leaf Area Index in Close Canopy Forest)

  • 이화선;이규성
    • 대한원격탐사학회지
    • /
    • 제33권5_1호
    • /
    • pp.571-585
    • /
    • 2017
  • 적색경계밴드(red-edge band)가 식물의 생물리적 특성과 밀접한 관계를 가지고 있다고 알려지고 있으며, 이에 따라 최근 적색경계밴드를 포함한 위성영상센서가 증가하고 있다. 본 연구는 향후 농림업중형위성에 적색경계밴드 탑재를 계획하고 있는 점을 감안하여, 적색경계밴드와 관련된 연구 현황과 활용 가치를 분석하고자 한다. 수관울폐도가 높은 우리나라 산림의 엽면적지수(Leaf Area Index, LAI) 추정에 있어서 적색경계밴드의 효과를 분석하였고, 더 나아가 LAI 추정을 위한 최적의 파장폭과 파장영역을 도출하고자 하였다. LAI가 5 이상인 갈참나무와 리기다소나무를 대상으로 4월부터 10월까지 시계열 분광반사 측정자료를 이용하여 LAI와의 상관관계를 분석하였다. 분광반사측정자료에서 5개의 파장폭(10 nm, 20 nm, 30 nm, 40 nm, 50 nm)과 71개의 중심파장(680 nm부터 750 nm까지 1 nm 간격)을 달리하여 모두 355개의 적색경계밴드를 모의 생성했다. 적색경계밴드를 기반으로 하는 두 개의 분광지수 NDRE(normalized difference red-edge index)와 CIRE(chlorophyll index red-edge)를 산출하여 LAI와 상관관계를 분석하였다. 적색경계밴드 기반의 분광지수인 NDRE 및 CIRE는 수관울폐도가 높은 갈참나무와 리기다소나무의 LAI와 높은 상관관계를 얻을 수 있었다. 이는 수관울폐도가 높은 국내 산림에서 일반적으로 사용되는 NDVI가 LAI와의 상관관계가 낮게 나타났던 한계를 해결할 수 있는 가능성을 보여주었다. 10 nm부터 50 nm까지 적색경계밴드의 파장폭 효과는 산림의 LAI와 관계에서 큰 차이를 보이지 않았다. LAI와 최대 상관관계를 보이는 적색경계밴드의 중심파장은 갈참나무에서는 720 nm 부근, 그리고 리기다소나무에서는 710 nm 주변으로 나타났다. 우리나라 농작물 및 산림의 식생정보 획득과 모니터링을 위한 최적의 적색경계밴드의 파장폭과 파장영역을 결정하기 위해서는 다른 생물리적인자(엽록소, 질소, 수분함량, 생체량 등)와의 관계도 충분히 고려하여야 한다.

지상용 초분광 카메라를 이용한 소나무재선충병 감염목 분광 특성 분석 (An Analysis of Spectral Pattern for Detecting Pine Wilt Disease Using Ground-Based Hyperspectral Camera)

  • 이정빈;김은숙;이승호
    • 대한원격탐사학회지
    • /
    • 제30권5호
    • /
    • pp.665-675
    • /
    • 2014
  • 본 연구에서는 소나무재선충병이 확산되어 있는 거제도를 대상으로 소나무재선충병 감염목 특성분석을 위하여 지상용 초분광 카메라를 활용하여 2012년과 2013년에 걸쳐 대상 임목을 촬영하였다. 영상 촬영은 소나무재선충병이 확산되는 시기인 6~9월 기간에 개체목 단위와 임분 단위로 구분하여, 개체목은 인위적으로 소나무재선충병을 주입한 공시목을 대상으로 실시하고, 임분은 소나무재선충병이 자연적으로 발생한 임분을 대상으로 실시하였다. 수백개의 파장대역 정보를 담고 있는 지상용 초분광 영상을 이용하여 소나무재선충병 감염단계에서부터 고사단계에 이르기까지 파장대역 변화와 특성분석을 진행하였다. 그 결과, 전체 파장대역 중 적색영역(550~700 nm)의 변화가 두드러지게 나타났으며 특히, 688 nm 전후의 파장대역에서 고사목과 정상목간의 가장 많은 변화폭이 관측되었다. 향후 초분광 항공사진을 활용한 소나무재선충병 감염목 탐지 활용가능성 판단을 위하여 개체목 단위 촬영영상보다 대면적의 임분단위 촬영영상을 활용한 분석이 진행되었다. 가장 큰 변화를 나타낸 688 nm 구간의 식생지수 활용을 위하여 Normalized Difference Vegetation Index(NDVI), Red Edge Normalized Difference Vegetation Index(reNDVI), Photochemical Reflectance Index(PRI), Anthocyanin Reflectance Index 2(ARI2) 식생지수에 대한 비교 분석을 실시하였다. 감염목 탐지에 효율성이 높다고 판단되는 지수는 NDVI와 reNDVI으로 나타났으며 688 nm를 NDVI와 reNDVI식 적색영역에 적용한 결과 688 nm를 포함하여 적용한 지수값에서 감염진행에 따른 가장 큰 변화폭을 나타내어 감염목 탐지에 가장 효율적인 것으로 판단되었다.

Predicting Italian Ryegrass Productivity Using UAV-Derived GLI Vegetation Indices

  • Seung Hak Yang;Jeong Sung Jung;Ki Choon Choi
    • 한국초지조사료학회지
    • /
    • 제44권3호
    • /
    • pp.165-172
    • /
    • 2024
  • Italian ryegrass (IRG) has become a vital forage crop due to its increasing cultivation area and its role in enhancing forage self-sufficiency. However, its production is susceptible to environmental factors such as climate change and drought, necessitating precise yield prediction technologies. This study aimed to assess the growth characteristics of IRG and predict dry matter yield (DMY) using vegetation indices derived from unmanned aerial vehicle (UAV)-based remote sensing. The Green Leaf Index (GLI), normalized difference vegetation index (NDVI), normalized difference red edge (NDRE), and optimized soil-adjusted vegetation index (OSAVI) were employed to develop DMY estimation models. Among the indices, GLI demonstrated the highest correlation with DMY (R2 = 0.971). The results revealed that GLI-based UAV observations can serve as reliable tools for estimating forage yield under varying environmental conditions. Additionally, post-winter vegetation coverage in the study area was assessed using GLI, and 54% coverage was observed in March 2023. This study assesses that UAV-based remote sensing can provide high-precision predictions of crop yield, thus contributing to the stabilization of forage production under climate variability.

무인기를 이용한 이탈리안 라이그라스의 파종계절별 식생지수 비교 (Comparative Analysis of Italian Ryegrass Vegetation Indices across Different Sowing Seasons Using Unmanned Aerial Vehicles)

  • 양승학;정종성;최기춘
    • 한국초지조사료학회지
    • /
    • 제43권2호
    • /
    • pp.103-108
    • /
    • 2023
  • 본 연구는 드론의 초분광장치를 이용하여 이탈리안 라이그라스 생육기간 중의 파종계절에 따른 식생지수 변화 및 생산성을 조사하였다. 수량성을 조사한 결과, 봄파종구의 건물수량이 가을파종구의 약 52%였으며 초장은 유의적으로 차이가 없었다. 식생지수를 산정하여 연속적인 패턴을 분석한 결과, 가을파종구의 대부분 식생지수가 시간이 지날수록 낮아지며, 봄파종구는 높아지는 유형을 보였으나 RGRI는 반대의 유형을 나타냈다. 재배기간에 따른 가을파종구의 건물수량과 RGRI의 상관성이 높았다.

UAV 식생지수 및 수고 자료를 이용한 엽면적지수(LAI) 추정 연구 (Study on the Estimation of leaf area index (LAI) of using UAV vegetation index and Tree Height data)

  • 문호경;최태영;강다인;차재규
    • 한국지리정보학회지
    • /
    • 제21권4호
    • /
    • pp.158-174
    • /
    • 2018
  • 엽면적지수(LAI: Leaf Area Index)는 식생의 광합성, 증발산, 지표면과 대기사이의 에너지 교환 등을 설명하는 주요 인자로서, 정확하고 활용성 높은 LAI 추정 기법에 대한 연구들이 진행되었다. 본 연구에서는 UAV를 이용한 LAI 추정 방법을 모색하기 위하여 현장 실측된 LAI 자료와 UAV 영상기반의 식생지수, 수고 및 위성영상(Sentinel-2) LAI 간의 관계성을 파악하고 효과적인 UAV LAI 산정방법을 제시하고자 하였다. 그 결과 연구에 활용된 6종의 식생지수 중 Red-edge band를 포함하고 있는 NDRE ($R^2=0.496$), CIRE ($R^2=0.443$)가 LAI 추정에 효과적인 식생지수로 나타났다. 수고(Canopy Height Model) 자료를 식생지수에 적용하였을 때 LAI에 대한 설명력이 향상되었으며, NDVI의 경우에 LAI와의 선형관계에서 발생되는 포화문제(saturation problem)를 보였던 구간(0.85)이 일부 해소됨을 확인하였다.