• Title/Summary/Keyword: Normalized Phase Constants

Search Result 5, Processing Time 0.016 seconds

Leaky Dispersion Characteristics in Circular Dielectric Rod Using Davidenko's Method

  • Kim Ki Young;Tae Heung-Sik;Lee Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.2
    • /
    • pp.72-79
    • /
    • 2005
  • The leaky dispersion characteristics of a circular dielectric rod were investigated using Davidenko's method for several lower-order transverse magnetic(TM) modes. The normalized complex propagation constants were precisely determined and their tolerances below $10^{-10}$ compared with zero for both real and imaginary parts. It was also checked whether the normalized complex propagation constants obtained represented forward leaky waves. The leaky modes existing below the cutoff frequency of the guided mode were classified as a nonphysical mode, reactive mode, antenna mode, and spectral gap based on a precise determination of the complex propagation constants. Finally, the effects of the dielectric constant and radius of the dielectric rod on the leaky dispersion characteristics were also considered.

A Technique for Calculating the Hybrid Mode Despersion Characteristics of Microstrip Lines using a Planar Waveguide Model (Planar Waveguide 모델을 이용한 마이크로 스트립선로의 하이브리드 모드 분산특성 계산)

  • 윤현보;고성선;백낙준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.1
    • /
    • pp.36-49
    • /
    • 1987
  • A planar waveguide model is presented for calculating dispersion characteristics of the normalized phase velocity and characteristic impedance with the frequency dependent effective dielectric constand and effective width in microstrip lines of the hybrid mode. Eeff(f) and Weff(f) are applied to a planar waveguide model by using an empirical relations and formula designed for CAD purposes as a function of frequency. A wide range of relative dielectric constants and the strip $h_{width}$strate height(W/h ratios), $0.5$\leq$W/h\leq2.5$ are used. These results are compared with static value, spectral domain analysis, and empirical results. As the result of a computer simulation, in the case of using a planar waveguide model, the frequency dependent normalized phase velocity is more closely approached to 1/ and characteristic impedance is more increased than the other method that has already been presented as the increasing of the frequency. And, the case of applying Eeff(f) designed for the purpose of CAD to this proposed model is show in better result than the case of using a empirical relations.

  • PDF

A Planar Waveguide Model for Calculating Microstrip Dispersion Characteristics (마이크로 스트립 선로의 분산특성 계산을 위한 Planar Waveguide 모델)

  • 유희준;고성선;윤현보
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.10 no.6
    • /
    • pp.335-342
    • /
    • 1985
  • A planar waveguide model is presented for calculating dispersion characteristics with the frequency dependent effective dielectric constant in microstrip lines and results are compared by the variation of each parameter. It is compared to use a wide range of relative dielectric constants and the strip $h_{width}$strate height, W/h ratios, 0.9$\leq$W/h$\leq$2. As the result of a computer simulation, the normalized phase velocity using a planar waveguide model for each case is more closely approached to 1/$\sqrt{\epsilon_r}$ as the increasing of the frequency than the other method that has already been presented.

  • PDF

Removals of PAH-quinones Using Birnessite-Mediated Oxidative-Transformation Processes (망간산화물(Birnessite)을 매개로한 산화-변환반응을 이용한 PAH-퀴논화합물의 제거)

  • Choi, Chan-Kyu;Harn, Yoon-I;Kim, Seong-Uk;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.396-404
    • /
    • 2011
  • An investigation on the removals of PAH-quinone compounds, which are commonly produced from the biological and/or chemical treatments of PAH-contaminated soils, from the aqueous phase via birnessite (${\delta}-MnO_2$)-mediated oxidative transformation is described. It was demonstrated that acenaphthenequinone (APQ), p-PAH quinone can be removed via birnessite-mediated oxidative-coupling reactions, and anthraquinone (AQ) and 1,4-naphthoquinone (1,4-NPQ), o-PAH quinones were efficiently removed by birnessite-mediated cross-coupling reactions in the presence of catechol (CAT) as a reactive mediator. The removals of PAH-quinone compounds followed pseudo-first-order reactions, and the rate constant (k, $hr^{-1}$) for the removals of 1,4-NPQ under the experiment conditions (1,4-NPQ = 10 mg/L, CAT = 50 mg/L, ${\delta}-MnO_2$ = 1.0 g/L, pH 5, Reaction time = 6~96 hr) was 0.0426, which was about 4 times lower than that of APQ (0.173). With the observed pseudo-first order rate constants with respect to birnessite loadings under the same experimental conditions, the surface-normalized specific rate constant, $K_{surf}$, for 1,4-NPQ was determined to be $8.5{\times}10^{-4}L/m^2{\cdot}hr$. The analysis of the kinetic data with respect to birnessite loading indicated that the cross-coupling reactions of 1,4-NPQ consist of two different reaction steps over time and the results have also been discussed in terms of the reaction mechanisms.

A Comparative Study on the Removals of 1-Naphthol by Natural Manganese Oxides and Birnessite (천연망간산화물과 버네사이트에 의한 1-Naphthol의 제거 특성 비교)

  • Lee, Doo-Hee;Harn, Yoon-I;Kang, Ki-Hoon;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.278-286
    • /
    • 2009
  • In this study, four natural Mn oxides ($NMO_1-NMO_4$) was characterized using x-ray diffraction, scanning electron microscopy, and their removal efficiency for 1-naphthol (1-NP) in aqueous phase, using batch reactor, was investigated. The results were compared with one another and a synthetic manganese oxide, birnessite. The NMOs have a various Mn minerals including pyrolusite (${\beta}-MnO_2$), cryptomeltane (${\alpha}-MnO_2$) as well as birnessite (${\delta}-MnO_2$) depending on their sources, which results in different removal efficiencies (removals, kinetics) and reaction types (sorption or oxidative-transformation). The comparative study showed that $NMO_1$ (electrolytic Mn oxide) have a higher removal efficiency for 1-NP via oxidative-transformation compared to birnessite. The 1-NP removals by NMOs were followed by pseudo-first order reaction, and the surface area-normalized specific rate constants ($K_{surf},\;L/m^2$ min) determined were in order of $NMO_1(3.31{\times}10^{-3})$>${\delta}-MnO_2(1.48{\times}10^{-3}){\fallingdotseq}NMO_3(1.46{\times}10^{-3})$>$NMO_2(0.83{\times}10^{-3})$>$NMO_4(0.67{\times}10^{-3})$. From the solvent extraction experiments with the Mn oxide precipitates after reaction, it was observed that the oxidative-transformation rates of 1-NP were in order of $NMO_1{\fallingdotseq}{\delta}-MnO_2$>$NMO_3$>$NMO_4{\gg}NMO_2$ and the analysis of HPLC chromatogram and UV-Vis. absorption ratios ($A_{2/4}$, $A_{2/6}$) on the supernatant confirmed that the reaction products were oligomers formed by oxidative-coupling reaction. Results from this study proved that natural Mn oxide (except $NMO_2$) used in this experiment can be effectively applied for the removal of naphthols in aqueous phase, and the removal efficiencies are depending on the surface characters of the Mn oxides.