• Title/Summary/Keyword: Normalized Images

Search Result 475, Processing Time 0.022 seconds

Analysis on the Effect of Spectral Index Images on Improvement of Classification Accuracy of Landsat-8 OLI Image

  • Magpantay, Abraham T.;Adao, Rossana T.;Bombasi, Joferson L.;Lagman, Ace C.;Malasaga, Elisa V.;Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.561-571
    • /
    • 2019
  • In this paper, we analyze the effect of the representative spectral indices, normalized difference vegetation index (NDVI), normalized difference water index (NDWI) and normalized difference built-up index (NDBI) on classification accuracies of Landsat-8 OLI image.After creating these spectral index images, we propose five methods to select the spectral index images as classification features together with Landsat-8 OLI bands from 1 to 7. From the experiments we observed that when the spectral index image of NDVI or NDWI is used as one of the classification features together with the Landsat-8 OLI bands from 1 to 7, we can obtain higher overall accuracy and kappa coefficient than the method using only Landsat-8 OLI 7 bands. In contrast, the classification method, which selected only NDBI as classification feature together with Landsat-8 OLI 7 bands did not show the improvement in classification accuracies.

Comparison of SAR Backscatter Coefficient and Water Indices for Flooding Detection

  • Kim, Yunjee;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.627-635
    • /
    • 2020
  • With the increasing severity of climate change, intense torrential rains are occurring more frequently globally. Flooding due to torrential rain not only causes substantial damage directly, but also via secondary events such as landslides. Therefore, accurate and prompt flood detection is required. Because it is difficult to directly access flooded areas, previous studies have largely used satellite images. Traditionally, water indices such asthe normalized difference water index (NDWI) and modified normalized difference water index (MNDWI) which are based on different optical bands acquired by satellites, are used to detect floods. In addition, as flooding likelihood is greatly influenced by the weather, synthetic aperture radar (SAR) images have also been used, because these are less influenced by weather conditions. In this study, we compared flood areas calculated from SAR images and water indices derived from Landsat-8 images, where the images were acquired at similar times. The flooded area was calculated from Landsat-8 and Sentinel-1 images taken between the end of May and August 2019 at Lijiazhou Island, China, which is located in the Changjiang (Yangtze) River basin and experiences annual floods. As a result, the flooded area calculated using the MNDWI was approximately 21% larger on average than that calculated using the NDWI. In a comparison of flood areas calculated using water indices and SAR intensity images, the flood areas calculated using SAR images tended to be smaller, regardless of the order in which the images were acquired. Because the images were acquired by the two satellites on different dates, we could not directly compare the accuracy of the water-index and SAR data. Nevertheless, this study demonstrates that floods can be detected using both optical and SAR satellite data.

User Interface Application for Cancer Classification using Histopathology Images

  • Naeem, Tayyaba;Qamar, Shamweel;Park, Peom
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.91-97
    • /
    • 2021
  • User interface for cancer classification system is a software application with clinician's friendly tools and functions to diagnose cancer from pathology images. Pathology evolved from manual diagnosis to computer-aided diagnosis with the help of Artificial Intelligence tools and algorithms. In this paper, we explained each block of the project life cycle for the implementation of automated breast cancer classification software using AI and machine learning algorithms to classify normal and invasive breast histology images. The system was designed to help the pathologists in an automatic and efficient diagnosis of breast cancer. To design the classification model, Hematoxylin and Eosin (H&E) stained breast histology images were obtained from the ICIAR Breast Cancer challenge. These images are stain normalized to minimize the error that can occur during model training due to pathological stains. The normalized dataset was fed into the ResNet-34 for the classification of normal and invasive breast cancer images. ResNet-34 gave 94% accuracy, 93% F Score, 95% of model Recall, and 91% precision.

Comparative Analysis between Normalized Burn Ration and Normalized Difference Vegetation Index in Forest Fire Damage Area (산불피해지역에서 정규산화율지수와 정규식생지수의 비교분석)

  • Choi Seung Pil;Park Jong Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.3
    • /
    • pp.261-268
    • /
    • 2004
  • Analysis on forest through satellite image data can be obtained from normalized burn ration (NBR) and normalized difference vegetation index (NDVI) from descriptive information of reflection on the earth's surface recorded each waveband. This study focuses on the efficiency of NBR through comparative analysis after obtaining NBR and NDVI of images form 1 you, 2 years and just after the forest fire and the time of forest-preserved of the area before the forest fire in Sacheon myeon, Cangneung City where the forest fro broke out. As a result, it shows dynamic changes with greater range that differences between NBR images rather than differences between NDVI images, which means it would be better to use NBR image for the analysis of the degrees of damages from forest fire or the status of vegetation restoration and also NBR image more distinctly shows both than NDVI image in forest fro damage area.

Wavelet Transform based Image Registration using MCDT Method for Multi-Image

  • Lee, Choel;Lee, Jungsuk;Jung, Kyedong;Lee, Jong-Yong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.1
    • /
    • pp.36-41
    • /
    • 2015
  • This paper is proposed a wavelet-based MCDT(Mask Coefficient Differential and Threshold) method of image registration of Multi-images contaminated with visible image and infrared image. The method for ensure reliability of the image registration is to the increase statistical corelation as getting the common feature points between two images. The method of threshold the wavelet coefficients using derivatives of the wavelet coefficients of the detail subbands was proposed to effectively registration images with distortion. And it can define that the edge map. Particularly, in order to increase statistical corelation the method of the normalized mutual information. as similarity measure common feature between two images was selected. The proposed method is totally verified by comparing with the several other multi-image and the proposed image registration.

Mapping Snow Depth Using Moderate Resolution Imaging Spectroradiometer Satellite Images: Application to the Republic of Korea

  • Kim, Daeseong;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.625-638
    • /
    • 2018
  • In this paper, we derive i) a function to estimate snow cover fraction (SCF) from a MODIS satellite image that has a wide observational area and short re-visit period and ii) a function to determine snow depth from the estimated SCF map. The SCF equation is important for estimating the snow depth from optical images. The proposed SCF equation is defined using the Gaussian function. We found that the Gaussian function was a better model than the linear equation for explaining the relationship between the normalized difference snow index (NDSI) and the normalized difference vegetation index (NDVI), and SCF. An accuracy test was performed using 38 MODIS images, and the achieved root mean square error (RMSE) was improved by approximately 7.7 % compared to that of the linear equation. After the SCF maps were created using the SCF equation from the MODIS images, a relation function between in-situ snow depth and MODIS-derived SCF was defined. The RMSE of the MODIS-derived snow depth was approximately 3.55 cm when compared to the in-situ data. This is a somewhat large error range in the Republic of Korea, which generally has less than 10 cm of snowfall. Therefore, in this study, we corrected the calculated snow depth using the relationship between the measured and calculated values for each single image unit. The corrected snow depth was finally recorded and had an RMSE of approximately 2.98 cm, which was an improvement. In future, the accuracy of the algorithm can be improved by considering more varied variables at the same time.

Comparative Analysis of NDWI and Soil Moisture Map Using Sentinel-1 SAR and KOMPSAT-3 Images (KOMPSAT-3와 Sentinel-1 SAR 영상을 적용한 토양 수분도와 NDWI 결과 비교 분석)

  • Lee, Jihyun;Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1935-1943
    • /
    • 2022
  • The development and application of a high-resolution soil moisture mapping method using satellite imagery has been considered one of the major research themes in remote sensing. In this study, soil moisture mapping in the test area of Jeju Island was performed. The soil moisture was calculated with optical images using linearly adjusted Synthetic Aperture Radar (SAR) polarization images and incident angle. SAR Backscatter data, Analysis Ready Data (ARD) provided by Google Earth Engine (GEE), was used. In the soil moisture processing process, the optical image was applied to normalized difference vegetation index (NDVI) by surface reflectance of KOMPSAT-3 satellite images and the land cover map of Environmental Systems Research Institute (ESRI). When the SAR image and the optical images are fused, the reliability of the soil moisture product can be improved. To validate the soil moisture mapping product, a comparative analysis was conducted with normalized difference water index (NDWI) products by the KOMPSAT-3 image and those of the Landsat-8 satellite. As a result, it was shown that the soil moisture map and NDWI of the study area were slightly negative correlated, whereas NDWI using the KOMPSAT-3 images and the Landsat-8 satellite showed a highly correlated trend. Finally, it will be possible to produce precise soil moisture using KOMPSAT optical images and KOMPSAT SAR images without other external remotely sensed images, if the soil moisture calculation algorithm used in this study is further developed for the KOMPSAT-5 image.

Adaptive Saturation Enhancement Algorithm on Normalized YCbCr color space (Normalized YCbCr 색 공간에서의 적응적 채도 향상 방법)

  • 옥현욱;최원희;김창용
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.385-388
    • /
    • 2003
  • In this paper, we propose a new saturation enhancement algorithm which is processed on the new color space, called Normalized YCbCr(NYCbCr). The algorithm consists of two processing unit. One is color space conversion from YCbCr to NYCbCr, and the other is using adaptive saturation mapping function(ASMF). NYCbCr color space is designed to prevent shortcomings such as luminance and hue shift of YCbCr color space and by saturation enhancement. ASMF is effective to enhance saturation properly for each image and to protect low saturation regions of color images from over-saturation. we verified our method using several color images. Experimental results show that the proposed method enhance the saturation with minimizing Luminance and Hue shift.

  • PDF

Quantification of Cerebral Perfusion Reserves using Deadtime Correction of Gamma Camera and Norma1ized Difference Ratio Image in Brain SPECT (뇌혈류 SPECT에서 감마카메라 불응시간보정과 정규화 감산영상을 이용한 뇌혈류 비축능의 정량화)

  • 이재성;곽철은
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.443-448
    • /
    • 1996
  • Sequential brain SPECT imaging has been used to assess the cerebral perfusion reserve(CPR) in cerebrovascular diseases(UD). We have realized parametric images of CPR using deadtime correction of gamma camera and normalized difference ratio. For the anatomical localization of CPR, the parametric images were registered to the contours of the cerebral regions using optimal threshold method, which showed to reflect the CPR more reliably and distinctively than the simple subtraction. We conclude that the quantitative estimation of CPR using normalized difference ratio image could be useflll for the diagnosis and prognostic assessment of CVD.

  • PDF

A Study on Estimation of Forest Burn Severity Using Kompsat-3A Images (Kompsat-3A호 영상을 활용한 산불피해 강도 산정에 관한 연구)

  • Minsun Yang;Min-A Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1299-1308
    • /
    • 2023
  • Forest fires are becoming more frequent and larger around the world due to climate change. Remote sensing such as satellite images can be used as an alternative or assistance data because it reduces various difficulties of field survey. Forest burn severity (differenced normalized burn ratio, dNBR) is calculated through the difference in normalized burn ratio (NBR) before and after a forest fire. The images used in the NBR formula are based on Landsat's near-infrared (NIR) and short-wavelength infrared (SWIR) bands. South Korea's satellite images don't have a SWIR band. So domestic studies related to forest burn severity calculated dNBR using overseas images or indirectly using the normalized difference vegetation index (NDVI) using South Korea's satellite images. Therefore, in this study, dNBR was calculated by substituting the mid-wavelength infrared (MWIR) band of Kompsat-3A (K3A) instead of the SWIR band in the NBR formula. The results were compared with the dNBR results obtained through Landsat which is the standard for dNBR formula. As a result, it was shown that dNBR using K3A's MWIR band has a wider range of values and can be expressed in more detail than dNBR using Landsat's SWIR band. Therefore, it is considered that K3A images will be highly useful in surveying burn areas and severity affected by forest fires. In addition, this study used the K3A's MWIR band images degraded to 30 m. It is considered that much better results will be obtained if a higher-resolution MWIR band is used.