• Title/Summary/Keyword: Normalized Digital Surface Model

Search Result 23, Processing Time 0.019 seconds

Normalized Digital Surface Model Extraction and Slope Parameter Determination through Region Growing of UAV Data (무인항공기 데이터의 영역 확장법 적용을 통한 정규수치표면모델 추출 및 경사도 파라미터 설정)

  • Yeom, Junho;Lee, Wonhee;Kim, Taeheon;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.499-506
    • /
    • 2019
  • NDSM (Normalized Digital Surface Model) is key information for the detailed analysis of remote sensing data. Although NDSM can be simply obtained by subtracting a DTM (Digital Terrain Model) from a DSM (Digital Surface Model), in case of UAV (Unmanned Aerial Vehicle) data, it is difficult to get an accurate DTM due to high resolution characteristics of UAV data containing a large number of complex objects on the ground such as vegetation and urban structures. In this study, RGB-based UAV vegetation index, ExG (Excess Green) was used to extract initial seed points having low ExG values for region growing such that a DTM can be generated cost-effectively based on high resolution UAV data. For this process, local window analysis was applied to resolve the problem of erroneous seed point extraction from local low ExG points. Using the DSM values of seed points, region growing was applied to merge neighboring terrain pixels. Slope criteria were adopted for the region growing process and the seed points were determined as terrain points in case the size of segments is larger than 0.25 ㎡. Various slope criteria were tested to derive the optimized value for UAV data-based NDSM generation. Finally, the extracted terrain points were evaluated and interpolation was performed using the terrain points to generate an NDSM. The proposed method was applied to agricultural area in order to extract the above ground heights of crops and check feasibility of agricultural monitoring.

Comparison of SGM Cost for DSM Generation Using Satellite Images (위성영상으로 DSM을 생성하기 위한 SGM Cost의 비교)

  • Lee, Hyoseong;Park, Soonyoung;Kwon, Wonsuk;Han, Dongyeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.473-479
    • /
    • 2019
  • This study applied SGM (Semi Global Matching) to generate DSM (Digital Surface Model) using WorldView-1 high-resolution satellite stereo pair in Terrassa, Spain provided by ISPRS (International Society for Photogrammetry and Remote Sensing). The SGM is an image matching algorithm that performs the computation of the matching cost for the stereo pair in multi-paths and aggregates the computed costs sequentially. This method finally calculates the disparity corresponding to the minimum (or maximum) value of the aggregation cost. The cost was applied to MI (Mutual Information), NCC (Normalized Cross-Correlation), and CT (Census Transform) in order to the SGM. The accuracy and performance of the outline representation result in DSM by each cost are presented. Based on the images used and the subject area, the accuracy of the CT cost results was the highest, and the outline representation was also most clearly depicted. In addition, while the SGM method represented more detailed outlines than the existing software, many errors occurred in the water area.

Transmission Lines Rights-of-Way Mapping Using a Low-cost Drone Photogrammetry

  • Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.63-70
    • /
    • 2019
  • Electric transmission towers are facilities to transport electrical power from a plant to an electrical substation. The towers are connected using wires considering the wire tension and the clearance from the ground or nearby objects. The wires are installed on a rights-of-way that is a strip of land used by electrical utilities to maintain the transmission line facilities. Trees and plants around transmission lines must be managed to keep the operation of these lines safe and reliable. This study proposed the use of a low-cost drone photogrammetry for the transmission line rights-of-way mapping. Aerial photogrammetry is carried out to generate a dense point cloud around the transmission lines from which a DSM (Digital Surface Model) and DTM (Digital Terrain Model) are created. The lines and nearby objects are separated using nDSM (normalized Digital Surface Model) and the noises are suppressed in the multiple image space for the geospatial analysis. The experimental result with drone images over two spans of transmission lines on a mountain area showed that the proposed method successfully generate the rights-of-way map with hazard nearby objects.

Land Cover Classification of High-Spatial Resolution Imagery using Fixed-Wing UAV (고정익 UAV를 이용한 고해상도 영상의 토지피복분류)

  • Yang, Sung-Ryong;Lee, Hak-Sool
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.501-509
    • /
    • 2018
  • Purpose: UAV-based photo measurements are being researched using UAVs in the space information field as they are not only cost-effective compared to conventional aerial imaging but also easy to obtain high-resolution data on desired time and location. In this study, the UAV-based high-resolution images were used to perform the land cover classification. Method: RGB cameras were used to obtain high-resolution images, and in addition, multi-distribution cameras were used to photograph the same regions in order to accurately classify the feeding areas. Finally, Land cover classification was carried out for a total of seven classes using created ortho image by RGB and multispectral camera, DSM(Digital Surface Model), NDVI(Normalized Difference Vegetation Index), GLCM(Gray-Level Co-occurrence Matrix) using RF (Random Forest), a representative supervisory classification system. Results: To assess the accuracy of the classification, an accuracy assessment based on the error matrix was conducted, and the accuracy assessment results were verified that the proposed method could effectively classify classes in the region by comparing with the supervisory results using RGB images only. Conclusion: In case of adding orthoimage, multispectral image, NDVI and GLCM proposed in this study, accuracy was higher than that of conventional orthoimage. Future research will attempt to improve classification accuracy through the development of additional input data.

Extraction of Spatial Information of Tree Using LIDAR Data in Urban Area (라이다 자료를 이용한 도시지역의 수목공간정보 추출)

  • Cho, Du-Young;Kim, Eui-Myoung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.11-20
    • /
    • 2010
  • In situation that carbon dioxide emissions are being increased as urbanization, urban green space is being promoted as an alternative to find solution for these problems. In urban areas, trees have the ability to reduce carbon dioxide as well as to be aesthetic effect. In this study, we proposed the methodology which uses only LIDAR data in order to extract these trees information effectively. To improve the operational efficiency according to the extraction of trees, the proposed methodology was carried out using multiple data processing such as point, polygon and raster. Because the existing NDSM(Normalized Digital Surface Model) contains both the building and tree information, it has the problems of high complexity of data processing for extracting trees. Therefore, in order to improve these problems, this study used modified NDSM which was removed estimate regions of building. To evaluate the performance of the proposed methodology, three different zones which coexist buildings and trees within urban areas were selected and the accuracy of extracted trees was compared with the image taken by digital camera.

Convergence of Remote Sensing and Digital Geospatial Information for Monitoring Unmeasured Reservoirs (미계측 저수지 수체 모니터링을 위한 원격탐사 및 디지털 공간정보 융합)

  • Hee-Jin Lee;Chanyang Sur;Jeongho Cho;Won-Ho Nam
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1135-1144
    • /
    • 2023
  • Many agricultural reservoirs in South Korea, constructed before 1970, have become aging facilities. The majority of small-scale reservoirs lack measurement systems to ascertain basic specifications and water levels, classifying them as unmeasured reservoirs. Furthermore, continuous sedimentation within the reservoirs and industrial development-induced water quality deterioration lead to reduced water supply capacity and changes in reservoir morphology. This study utilized Light Detection And Ranging (LiDAR) sensors, which provide elevation information and allow for the characterization of surface features, to construct high-resolution Digital Surface Model (DSM) and Digital Elevation Model (DEM) data of reservoir facilities. Additionally, bathymetric measurements based on multibeam echosounders were conducted to propose an updated approach for determining reservoir capacity. Drone-based LiDAR was employed to generate DSM and DEM data with a spatial resolution of 50 cm, enabling the display of elevations of hydraulic structures, such as embankments, spillways, and intake channels. Furthermore, using drone-based hyperspectral imagery, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) were calculated to detect water bodies and verify differences from existing reservoir boundaries. The constructed high-resolution DEM data were integrated with bathymetric measurements to create underwater contour maps, which were used to generate a Triangulated Irregular Network (TIN). The TIN was utilized to calculate the inundation area and volume of the reservoir, yielding results highly consistent with basic specifications. Considering areas that were not surveyed due to underwater vegetation, it is anticipated that this data will be valuable for future updates of reservoir capacity information.

Variation of Seasonal Groundwater Recharge Analyzed Using Landsat-8 OLI Data and a CART Algorithm (CART알고리즘과 Landsat-8 위성영상 분석을 통한 계절별 지하수함양량 변화)

  • Park, Seunghyuk;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.395-432
    • /
    • 2021
  • Groundwater recharge rates vary widely by location and with time. They are difficult to measure directly and are thus often estimated using simulations. This study employed frequency and regression analysis and a classification and regression tree (CART) algorithm in a machine learning method to estimate groundwater recharge. CART algorithms are considered for the distribution of precipitation by subbasin (PCP), geomorphological data, indices of the relationship between vegetation and landuse, and soil type. The considered geomorphological data were digital elevaion model (DEM), surface slope (SLOP), surface aspect (ASPT), and indices were the perpendicular vegetation index (PVI), normalized difference vegetation index (NDVI), normalized difference tillage index (NDTI), normalized difference residue index (NDRI). The spatio-temperal distribution of groundwater recharge in the SWAT-MOD-FLOW program, was classified as group 4, run in R, sampled for random and a model trained its groundwater recharge was predicted by CART condidering modified PVI, NDVI, NDTI, NDRI, PCP, and geomorphological data. To assess inter-rater reliability for group 4 groundwater recharge, the Kappa coefficient and overall accuracy and confusion matrix using K-fold cross-validation were calculated. The model obtained a Kappa coefficient of 0.3-0.6 and an overall accuracy of 0.5-0.7, indicating that the proposed model for estimating groundwater recharge with respect to soil type and vegetation cover is quite reliable.

Performance Comparison of Matching Cost Functions for High-Quality Sea-Ice Surface Model Generation (고품질 해빙표면모델 생성을 위한 정합비용함수의 성능 비교 분석)

  • Kim, Jae-In;Kim, Hyun-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1251-1260
    • /
    • 2018
  • High-quality sea-ice surface models generated from aerial images can be used effectively as field data for developing satellite-based remote sensing methods but also as analysis data for understanding geometric variations of Arctic sea-ice. However, the lack of texture information on sea-ice surfaces can reduce the accuracy of image matching. In this paper, we analyze the performance of matching cost functions for homogeneous sea-ice surfaces as a part of high-quality sea-ice surface model generation. The matching cost functions include sum of squared differences (SSD), normalized cross-correlation (NCC), and zero-mean normalized cross-correlation (ZNCC) in image domain and phase correlation (PC), orientation correlation (OC), and gradient correlation (GC) in frequency domain. In order to analyze the matching performance for texture changes clearly and objectively, a new evaluation methodology based on the principle of object-space matching technique was introduced. Experimental results showed that it is possible to secure reliability and accuracy of image matching only when optimal search windows are variably applied to each matching point in textureless regions such as sea-ice surfaces. Among the matching cost functions, NCC and ZNCC showed the best performance for texture changes.

Extraction of Building Boundary on Aerial Image Using Segmentation and Overlaying Algorithm (분할과 중첩 기법을 이용한 항공 사진 상의 빌딩 경계 추출)

  • Kim, Yong-Min;Chang, An-Jin;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.49-58
    • /
    • 2012
  • Buildings become complex and diverse with time. It is difficult to extract individual buildings using only an optical image, because they have similar spectral characteristics to objects such as vegetation and roads. In this study, we propose a method to extract building area and boundary through integrating airborne Light Detection and Ranging(LiDAR) data and aerial images. Firstly, a binary edge map was generated using Edison edge detector after applying Adaptive dynamic range linear stretching radiometric enhancement algorithm to the aerial image. Secondly, building objects on airborne LiDAR data were extracted from normalized Digital Surface Model and aerial image. Then, a temporary building areas were extracted by overlaying the binary edge map and building objects extracted from LiDAR data. Finally, some building boundaries were additionally refined considering positional accuracy between LiDAR data and aerial image. The proposed method was applied to two experimental sites for validation. Through error matrix, F-measure, Jaccard coefficient, Yule coefficient, and Overall accuracy were calculated, and the values had a higher accuracy than 0.85.

Highly Dense 3D Surface Generation Using Multi-image Matching

  • Noh, Myoung-Jong;Cho, Woo-Sug;Bang, Ki-In
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.87-97
    • /
    • 2012
  • This study presents an automatic matching method for generating a dense, accurate, and discontinuity-preserved digital surface model (DSM) using multiple images acquired by an aerial digital frame camera. The proposed method consists of two main procedures: area-based multi-image matching (AMIM) and stereo-pair epipolar line matching (SELM). AMIM evaluates the sum of the normalized cross correlation of corresponding image points from multiple images to determine the optimal height of an object point. A novel method is introduced for determining the search height range and incremental height, which are necessary for the vertical line locus used in the AMIM. This procedure also includes the means to select the best reference and target images for each strip so that multi-image matching can resolve the common problem over occlusion areas. The SELM extracts densely positioned distinct points along epipolar lines from the multiple images and generates a discontinuity-preserved DSM using geometric and radiometric constraints. The matched points derived by the AMIM are used as anchor points between overlapped images to find conjugate distinct points using epipolar geometry. The performance of the proposed method was evaluated for several different test areas, including urban areas.