• Title/Summary/Keyword: Normal strength concrete

Search Result 836, Processing Time 0.024 seconds

Effect of Autogenous Shrinkage on Shrinkage behavior in High Stength Concrete (자기건조수축을 고려한 고강도 콘크리트의 수축변형 특징에 관한 연구)

  • Paek, Nak-Seung;Cha, Soo-Won;Lee, Seong-Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.429-432
    • /
    • 2006
  • The shrinkage mechanism of high strength concrete is different from that of normal concrete. The shrinkage of normal concrete is subjected to evaporate moisture in concrete, but most shrinkage in high strength concrete is caused by chemical reaction. To analyze shrinkage of concrete exactly, it is necessary to divide drying shrinkage with autogenous shrinkage in terms of degree of hydration, especially in concrete with low W/C ratio. The proposed method can provide a rational basis for prediction of shrinkage in high strength concrete structure.

  • PDF

Engineering Properties of Surlightweight Polymer Concrete (초경량 폴리머 콘크리트의 공학적 특성)

  • 성찬용;김경태
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.75-81
    • /
    • 1997
  • This study was performed to evaluate the engineering properties of surlightweight polymer concrete using synthetic lightweight aggregate. The following conclusions were drawn; 1. The unit weight was in the range of 0.849~0.969t/$m^3$, the unit weights of those concrete were decreased by 58 ~ 63% than that of the normal cement concrete. 2. The highest strength was achieved by $P_1$, and compressive strength was increased by 93% and bending strength by 364% than that of the normal cement concrete, respectively. 3. The ultrasonic pulse velocity was in the range of 2, 346~2, 702m/s, which was low compared to that of the normal cement concrete. 4. The dynamic modulus of elasticity was in the range of $1.561{\times} 10{^5}~1.916{\times} 10{^5}kgf/cm^2$, which was approximately 52~98% of that of the normal cement concrete. 5. The compressive and bending strength were increased with the increase of unit weight. But, the dynamic modulus of elasticity and ultrasonic pulse velocity were decreased with the increase of unit weight.

  • PDF

Flexural Strain and Fracture Toughness of Recycled Concrete (재생콘크리트의 휨 변형과 파괴 특성)

  • 김광우;김주인;김기성
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.90-98
    • /
    • 1995
  • The recycled concrete, average compressive strength of which was 2l0kg/cm$^2$ or higher with slump range of 14~18cm, was prepared by replacing 25% and 50% by weight of coarse aggregate with recycled aggregate from waste concrete. Mix design method for crushed aggregates was used and all specimens were cured by normal moisture curing method. A plasticiser and a fly ash were added to the mix to improve performance of recycled concrete. Flexural strength, stress- strain relationship and fracture toughness were evaluated by comparing with those of normal concretes. Recycled concrete showed, in general, lower flexural strength and fracture toughness, and higher strain under the same stress level. Fly ash in the concrete had an effect of reducing the strength and fracture toughness on both normal and recycled concretes. Since fly ash is known to improve many properties of concrete, while reducing strength properties, decision for using fly ash should be made carefully depending on the intended usage of the recycled concrete.

  • PDF

Engineering Properties of Permeable Polymer Concrete With Stone Dust and Fly Ash (석분과 플라이 애쉬를 혼입한 투수용 폴리머 콘크리트의 공학적 성질)

  • 성찬용;정현정
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.4
    • /
    • pp.147-154
    • /
    • 1996
  • This study wag performed to evaluate the engineering properties of permeable polymer concrete with stone dust and fly ash and unsaturated polyester resin. The following conclusions were drawn. 1. The highest strength was achieved by stone dust filled permeable polymer concrete, it was increased 17% by compressive strength, 188% by bending strength than that of the normal cement concrete, respectively. 2. The water permeability was in the range of 3.O76~4.152${\ell}/ cm{^2}/h$, and it was largely dependent upon the mix design. These concrete can be used to the structures which need water permeability. 3. The static modulus of elasticity was in the range of $1.15{\times} 10^5kg/cm^2$, which was approximately 53 56% of that of the normal cement concrete. 4. The poisson's number of permeable polymer concrete was in the range of 5.106~5.833, which was less than that of the normal cement concrete. 5. The dynamic modulus of elasticity was in the range of $1.29{\times} 10^5~1.5{\times} 10^5 kg/cm^2$, which was approximately less compared to that of the normal cement concrete. Stone dust filled permeable polymer concrete was showed higher dynamic modulus. The dynamic modulus of elasticity were increased approximately 7~13% than that of the static modulus. 6. The compressive strength, bending strength, elastic modulus, poisson's ratio, longitudinal strain and horizontal strain were decreased with the increase of poisson's number and water permeability at those concrete.

  • PDF

Post-peak behavior and flexural ductility of doubly reinforced normal- and high-strength concrete beams

  • Pam, H.J.;Kwan, A.K.H.;Ho, J.C.M.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.5
    • /
    • pp.459-474
    • /
    • 2001
  • The complete moment-curvature curves of doubly reinforced concrete beams made of normal- or high-strength concrete have been evaluated using a newly developed analytical method that takes into account the stress-path dependence of the constitutive properties of the materials. From the moment-curvature curves and the strain distribution results obtained, the post-peak behavior and flexural ductility of doubly reinforced normal- and high-strength concrete beam sections are studied. It is found that the major factors affecting the flexural ductility of reinforced concrete beam sections are the tension steel ratio, compression steel ratio and concrete grade. Generally, the flexural ductility decreases as the amount of tension reinforcement increases, but increases as the amount of compression reinforcement increases. However, the effect of the concrete grade on flexural ductility is fairly complicated, as will be explained in the paper. Quantitative analysis of such effects has been carried out and a formula for direct evaluation of the flexural ductility of doubly reinforced concrete sections developed. The formula should be useful for the ductility design of doubly reinforced normal- and high-strength concrete beams.

The Application of High Strength Concrete on Woo-Sung Character 199 Project (우성 캐릭터 199에 고강도 콘크리트 적용에 관한 연구)

  • 신성우;안종문;김원섭;김세현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.357-362
    • /
    • 1996
  • The objective of this study is to investigate material properties and quality control of cast-in-place high strength concrete. High strength concrete with a design strength of 420 kgf/$\textrm{cm}^2$ is successfully produced at a ready-mixed concrete plant, and placed at a tall building. Many laboratory and field tests are carried out for the successful construction of the reinforced high strength concrete building. As the results of this study, the average actual 28-day compressive strength is 513 kgf/$\textrm{cm}^2$ and the coefficient of variation is 6.8%. The placing speed is comparable to normal strength concrete, however, the pump pressure is higher than that of normal strength concrete. To prevent cracks of massive and long concrete members, the control of hydration heat and shrinkage is very important.

  • PDF

Development of Tension Stiffening Models for Steel Fibrous High Strength Reinforced Concrete Members (강섬유보강 고강도 철근콘크리트 부재의 인장강성모델 개발)

  • 홍창우;윤경구;이정호;박제선
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.35-46
    • /
    • 1999
  • The steel fiber reinforced concrete may affect substantially to the tension stiffening at post cracking behavior. Even if several tension stiffening models exist, they are for plain and normal strength concrete. Thus, the development of tension stiffening models for steel fibrous high strength RC members are necessary at this time when steel fiber reinforced and high strength concretes are common in use. This paper presents tension stiffening effects from experimental results on direct tension members with the main variables such as concrete strength, concrete cover depth, steel fiber quantity and aspect ratio. The comparison of existing models against experimental results indicated that linear reduced model closely estimated the test results at normal strength level but overestimated at high strength level. Discontinuity stress reduced model underestimated at both strength levels. These existing models were not valid enough in applying at steel fibrous high strength concrete because they couldn't consider the concrete strength nor section area. Thus, new tension stiffening models for high strength and steel fiber reinforced concrete were proposed from the analysis of experimental results, considering concrete strength, rebar diameter, concrete cover depth, and steel fiber reinforcement.

Flexural Strength of Dual Concrete Beams Composed of Fiber Reinforced Concrete and Normal Concrete (섬유보강 콘크리트와 보통콘크리트로 합성된 이중 콘크리트 보의 휨 강도)

  • 박대효;부준성;조백순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.579-584
    • /
    • 2001
  • The reinforced concrete(RC) beam is developed cracks because the compression strength of concrete is strong but the tensile strength is weak. The structural strength and stiffness is decreased by reduction of tension resistance capacity of concrete due to the developed cracks. Using the fiber reinforced concrete that is increased the flexural strength and tensile strength at tensile part can enhance the strength and stiffness of concrete structure and decrease the tensile flexural cracks and deflection. Therefore, The reinforced concrete used the fiber reinforced concrete at tensile part ensure the safety and serviceability of the concrete structures. In this study, analytical model of a dual concrete beam that is composed of the normal strength concrete at compression part and the high tensile strength concrete at tensile part is developed by using the equilibrium condition of forces and compatibility condition of strains and is parted into elastic analytical model and ultimate analytical model. Three group of test beam that is formed of one reinforced concrete beam and two dual concrete beams for each steel reinforcement ratio is tested to examine the flexural behavior of dual concrete beams. The comparative study of total nine test beams is shown that the ultimate load of a dual concrete beams relative to the reinforced concrete beams have an increase in approximately 30%. In addition, the initial flexural rigidity, as used here, refer to the slope of load-deflection curves in elastic state is increased and the deflection is decreased.

  • PDF

Development and Application of High-Strength Lightweight Concrete, and its Structural Properties (고강도 경량콘크리트의 개발, 구조특성 및 실용화)

  • Choi, Myung-Shin;Ahn, Jong-Moon;Shin, Sung-Woo;Kang, Hoon;Kim, Jung-Shik;Lee, Jae-Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.37-44
    • /
    • 1998
  • The objective of this study is development of high strength lightweight concrete and application or structural use. For this, mix proportions for each strength level were selected from lab tests, and adapted to producing ready-mixed concrete in batcher plant. It was very important to prewet the lightweight aggregates sufficiently for producibility and also workability. Splitting tensile strength of high-strength lightweight concrete produced has lower values than that of normal weight concrete, but modulus of rupture and modulus of elasticity are not less than normal weight concrete. The strength reduction factor ($\lambda$) for sand-lightweight concrete make higher than 0.85 present in structures using high-strength lightweight concrete. And it was showed that not parabola distribution but triangular distribution of stress in compression zone.

  • PDF

Analyzing the Usable Range of Viscosity Modifying Admixture for Prevention Material Segregation of Normal Strength Grade Concrete (일반강도 콘크리트의 재료분리 발생 방지를 위한 증점제 사용 범위 분석)

  • Lee, Yu-Jeong;Han, Dong-Yeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.83-84
    • /
    • 2020
  • The purpose of this study is to achieve a sufficient fluidity without segregation for normal compressive strength grade concrete mixture. The major obstacle of achieving fluidity of normal compressive strength grade concrete mixture is segregation. Therefore, in this research, the proper use of VMA was suggested to prevent segregation.

  • PDF