• Title/Summary/Keyword: Normal gait

Search Result 364, Processing Time 0.022 seconds

Portable Gait-Event Detection System for FES Locomotion (FES 보행을 위한 휴대용 보행 이벤트 검출 시스템)

  • Kong, Se-Jin;Kim, Chul-Seung;Park, Kwan-Yong;Eom, Gwang-Moon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.5
    • /
    • pp.248-253
    • /
    • 2006
  • The purpose of this study is to develop a portable gait-event detection system which is necessary for the cycle-to-cycle FES(functional electrical stimulation) control of locomotion. To make the system portable, we made following modifications in the gait signal measurement system. That is, 1) to make the system wireless using Bluetooth communication, 2) to make the system small-sized and battery-powered by using low power consumption ${\mu}$ P(ATmega8535L). The gait-events were analyzed in off-line at the main computer using ANN(Artificial Neural Network). The Proposed system showed no mis-detection of the gait-events of normal subject and hemiplegia subjects. The performance of the system was better than the previous wired-system.

Net Center of Pressure Analysis during Gait Initiation Patient with Hemiplegia : a pilot study (편마비 환자의 보행시작 시 총 압력중심 변화 : 사전연구)

  • Hwang, S.H.;Park, S.W.;Choi, H.S.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.50-55
    • /
    • 2010
  • Gait initiation is a transitional process from the balanced upright standing to the beginning of steady-state walking. Dysbalanced gait initiation often causes stroke patients to fall. The net center of pressure, measured by two triaxial force plates from twenty healthy subjects and two stroke patients, was investigated to assess asymmetry of gait initiation in hemiparetic subjects. The time interval and distance of the net center of pressure(CoP) moved from the initiation point to the toe off(S1) and from the toe off to the initial contact(S2) were calculated during gait initiation of normal and stroke patients. When the patient with right hemiplegia(A) initiated his gait with right foot, the time interval and the distance of the net CoP in S1 and S2 were smaller than that of normal subjects' values. However, he initiated the gait with left foot(unaffected side) the time interval and the distance of net CoP in S1 were larger than normative values. Differently, the patient with left hemiplegia(B) has shown that larger time interval and distance in S1 and smaller time interval and distance in S2 in both sides. His asymmetry(with which side the gait initiated) was not significant. It is too early to conclude that these results could be general characteristics of the stroke patients because the variations were large and moreover, the level of motor recovery of the patients was different. However, it is expected that these trials could help to set up the strategy of the therapy for the rehabilitation or prevention of fall in stroke patients.

A Case Report of Normal Pressure Hydrocephalus (신병증(腎病證)으로 인한 정상압수두증 환자의 오령산 치험 1례)

  • Go, Ho-Yeon;Jung, Seng-Min;Im, Young-Nam;Park, Jeung-Sup;Jun, Chan-Yong
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.221-226
    • /
    • 2004
  • Objective : This study was designed to evaluate the effects of oriental medicine therapy on a normal pressure hydrocephalus patient Methods : The clinical data was analyzed on a patient with normal pressure hydrocephalus whose main symptoms were gait apraxia, dementia and urinary incontinence, The patient was admitted to the internal medicine department of KyungWon university In-cheon Oriental Medical Hospital, on April 19, 2004 and remained until Apri 30, 2004. He was treated with herbal medicine(Oryung-San), acupuncture and moxa therapy. Results : After treatment, improvement was seen in gait apraxia, dementia and urinary disturbance. Conclusion : The study suggests that oriental medicine therapy is significantly effective in the treatment of normal pressure hydrocephalus.

  • PDF

Gait Phases Detection and Judgment based Multi Biomedical Signals (다중 생체 신호 기반 보행 단계 감지 및 판단)

  • Kim, S.J.;Jeong, E.C.;Song, Y.R.;Yoon, K.S.;Lee, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.2
    • /
    • pp.43-48
    • /
    • 2012
  • In this paper, we present the method of gait phases detection using multi biomedical signals during normal gait. Electromyogram(EMG) signals, muscle of thigh angle measurement device and resistive sensors are used for experiments. We implemented a test targeting five adult male and identified the pattern of EMG signal of normal gait. For acquiring the EMG signal, subjects attached surface Ag/AgCl electrodes to quadriceps femoris, biceps femoris, tibialis anterior and gastrocnemius medialis. Resistance sensors are attached to the heel toe and soles of the each feet for measuring attachment state of between feet and ground. Infrared sensors are attached on the thigh and thigh angle measurement device has the range from flection 25 degrees to extension 20 degrees. The results of this paper, The stance and swing phase could be confirmed during the normal gait and be classified in detail the eight steps.

  • PDF

Correlation Analysis Between Gait Pattern and Structural Features of Cerebral Cortex in Patients with Idiopathic Normal Pressure Hydrocephalus (특발정상압수두증 환자의 보행 패턴과 대뇌피질의 구조적인 특징의 상관관계 분석)

  • Yun, EunKyeong;Kang, Kyunghun;Yoon, Uicheul
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.295-303
    • /
    • 2021
  • Idiopathic normal-pressure hydrocephalus (INPH) is considered a potentially treatable neurological disorder by shunt surgery and characterized by a triad of symptoms including gait disturbance, cognitive impairment and urinary dysfunction. Although disorders of white matter are generally viewed as the principal pathological features of INPH, analysis of cortical features are important since the destruction of neural tracts could be associated with cortical structural changing. The aim of the study was to determine whether there was any relationship between gait parameter and structural features of cerebral cortex in INPH patients. Gait parameters were measured as follows: step width, toe in/out angle, coefficient of variation (CV) value of stride length, CV value of stride time. After obtaining individual brain MRI of patients with INPH and hemispheric cortical surfaces were automatically extracted from each MR volume, which reconstructed the inner and outer cortical surface. Then, cortical thickness, surface area, and volume were calculated from the cortical surface. As a result, step width was positively correlated with bilateral postcentral gyrus and left precentral gyrus, and toe in/out was positively correlated with left posterior parietal cortex and left insula. Also, the CV value of stride length showed positive correlation in the right superior frontal sulcus, left insula, and the CV value of stride time showed positive correlation in the right superior frontal sulcus. Unique parameter of cerebral cortical changes, as measured using MRI, might underline impairments in distinct gait parameters in patients with INPH.

A Study on the Gait Test Human Dynamic Simulation Using Gait Motion Capture and Foot Pressure Measurement : Analysis of Gait Pattern with Wearing Military Equipment of Korean Male Adult (Gait Motion Capture 및 족압 측정을 이용한 보행특성시험 및 동력학적 인체 시뮬레이션 연구 : 한국인 성인 남자의 군장착용 보행 특성 해석)

  • Lee S.H.;Lee Y.S.;Choi Y.J.;Lee J.W.;Chae J.W.;Choi E.J.;Kim I.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.877-880
    • /
    • 2005
  • This paper suggests gait analysis and gait simulation method using Gait Motion Capture equipment and plantar pressure measurement system. The gait of normal person and how it will be effected by added weight with wearing military equipments are studied by suggested method. It is measured that a change of gait pattern when wears military equipments with Korean male adult(height 180 cm, weight 70 kg) and simulated its results.

  • PDF

Effects of hallux valgus angle on one-legged stance and gait parameters in young adults: a preliminary study

  • Ji, Minkyung;Park, Hyodong;Lee, Heeyeon;Yoo, Minjoo;Ko, Eunsan;Woo, Youngkeun
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.1
    • /
    • pp.10-17
    • /
    • 2020
  • Objective: Hallux valgus (HV) is a common musculoskeletal deformity that is accompanied with pain and continues to decrease one's quality of life and ability to perform daily life activities by affecting gait and static stability. Therefore, this study aimed to investigate the effect of the angle of HV (HVA) and to compare the one-legged stance and gait parameters in young adults with less HV and severe HV. Design: Cross-sectional study. Methods: Forty young adults were divided into two groups, where HVA ≥15° (n=20) was defined as HV, and HVA <15° (n=20) was defined as normal. For balance ability, the center of pressure (COP) path, velocity, length of axis of the COP path, deviation of the x-axis and y-axis, and percentage of foot pressure were measured, and gait, the foot rotation angle, step length, percentage of each phase of the gait cycle, time change from the heel to forefoot, and maximum pressure of the forefoot and midfoot were measured. Results: Significant differences were found in sway length and time change from heel to forefoot during walking between the normal and HV groups (p<0.05). Most parameters were not associated with the HVA, but parameters such as length of axis and time to change from heel to forefoot were significantly associated with the HVA (p<0.05). Conclusions: These results suggest that most one-legged stance and gait parameters were not significantly affected by the HVA in young adults; therefore, future studies are needed in order to address other dynamic parameters and other methods of gait analysis for detecting clinically meaningful conditions.

Comparison of Gait Pattern during the Support Phase after Perturbation According to Age (보행 시 지지면 급변에 따른 연령별 운동학적 반응 형태 비교)

  • Chun, Young-Jin;Shin, In-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.3
    • /
    • pp.281-288
    • /
    • 2011
  • The purpose of this study was to analyze the difference in reaction patterns during the support phase after perturbation in gait according to different age. A total of 12 subjects participated; 5 elderly and 7 adults(control), to investigate the differences between normal and perturbed gait. The step length didn't change during normal and perturbed gait but was longer in the control group. There was no difference in the step width. When the right foot was perturbed, the control group's left foot speed was faster than the elderly group's which was to maintain stability. The elderly flexed both right and left knees more than the control group. After the perturbation, the elderly group had a larger trunk anterior flexion. With the larger flexion of both legs of the elderly group it shows that the lack of knee flexion strength is a factor, that could cause falling and so a prevention program should focus on strengthening the quadriceps. With the excessive trunk flexion after the perturbation by the elderly group observed, it is suggested that while walking everyday a good routine of walking with an upright posture should be developed.

Modeling and Posture Control of Lower Limb Prosthesis Using Neural Networks

  • Lee, Ju-Won;Lee, Gun-Ki
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.2
    • /
    • pp.110-115
    • /
    • 2004
  • The prosthesis of current commercialized apparatus has considerable problems, requiring improvement. Especially, LLP(Lower Limb Prosthesis)-related problems have improved, but it cannot provide normal walking because, mainly, the gait control of the LLP does not fit with patient's gait manner. To solve this problem, HCI((Human Computer Interaction) that adapts and controls LLP postures according to patient's gait manner more effectively is studied in this research. The proposed control technique has 2 steps: 1) the multilayer neural network forecasts angles of gait of LLP by using the angle of normal side of lower limbs; and 2) the adaptive neural controller manages the postures of the LLP based on the predicted joint angles. According to the experiment data, the prediction error of hip angles was 0.32[deg.], and the predicted error of knee angles was 0.12[deg.] for the estimated posture angles for the LLP. The performance data was obtained by applying the reference inputs of the LLP controller while walking. Accordingly, the control performance of the hip prosthesis improved by 80% due to the control postures of the LLP using the reference input when comparing with LQR controller.

Effect of Robot-Assisted Wearable Exoskeleton on Gait Speed of Post-Stroke Patients: A Systematic Review and Meta-Analysis of a Randomized Controlled Trials

  • Chankyu Kim;Hyun-Joong Kim
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.471-477
    • /
    • 2022
  • Objective: The greatest motor impairment after stroke is a decreased ability to walk. Most stroke patients achieve independent gait, but approximately 70% do not reach normal speed, making it difficult to reach a standard of daily living. Therefore, a wearable exoskeleton is recommended for optimal independent gait because different residual disorders hinder motor function after stroke. This review synthesized the effect on gait speed in randomized controlled trials (RCTs) in which gait training using a wearable exoskeleton was performed on post-stroke patients for qualitative and quantitative analysis. Design: A systematic review and meta-analysis of a randomized controlled trials Methods: RCTs using wearable exoskeletons in robotic rehabilitation of post-stroke patients were extracted from an international electronic database. For quality assessment and quantitative analysis, RevMan 5.4 was used. Quantitative analysis was calculated as the standardized mean difference (SMD) and presented as a random effect model. Results: Five studies involving 197 post-stroke patients were included in this review. As a result of the analysis using a random effect model, gait training using a wearable exoskeleton in post-stroke patients showed a significant improvement in gait speed compared to the non-wearing exoskeleton (SMD=1.15, 95% confidence interval: 0.52 to 1.78). Conclusions: This study concluded that a wearable exoskeleton was more effective than conventional gait training in improving the gait speed in post-stroke patients.