• Title/Summary/Keyword: Normal element

검색결과 1,212건 처리시간 0.034초

Simulation of eccentricity effects on short- and long-normal logging measurements using a Fourier-hp-finite-element method (Self-adaptive hp 유한요소법을 이용한 단.장노말 전기검층에서 손데의 편향 효과 수치모델링)

  • Nam, Myung-Jin;Pardo, David;Torres-Verdin, Carlos;Hwang, Se-Ho;Park, Kwon-Gyu;Lee, Chang-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • 제13권1호
    • /
    • pp.118-127
    • /
    • 2010
  • Resistivity logging instruments are designed to measure the electrical resistivity of a formation, and this can be directly interpreted to provide a water-saturation profile. However, resistivity logs are sensitive to borehole and shoulder-bed effects, which often result in misinterpretation of the results. These effects are emphasised more in the presence of tool eccentricity. For precise interpretation of short- and long-normal logging measurements in the presence of tool eccentricity, we simulate and analyse eccentricity effects by combining the use of a Fourier series expansion in a new system of coordinates with a 2D goal-oriented high-order self-adaptive hp finite-element refinement strategy, where h denotes the element size and p the polynomial order of approximation within each element. The algorithm automatically performs local mesh refinement to construct an optimal grid for the problem under consideration. In addition, the proper combination of h and p refinements produces highly accurate simulations even in the presence of high electrical resistivity contrasts. Numerical results demonstrate that our algorithm provides highly accurate and reliable simulation results. Eccentricity effects are more noticeable when the borehole is large or resistive, or when the formation is highly conductive.

Analysis of Girders with Web Opening (유공복부(有孔腹部)를 가진 거더의 해석(解析))

  • Yang, Chang Hyun;Chung, Won Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제5권4호
    • /
    • pp.75-86
    • /
    • 1985
  • A beam with web opening may reduce the cost of steel and the height of multistory steel buildings. Bower's analysis based on the theory of elasticity and Vierendeel analysis had evaluated the normal stresses around the holes, but these analyses have difficulties for practical uses because of complexity and the limitation for their application. In this study, it is shown that the finite element method, using smaller number of isoparametric elements by taking only a part of the beam which includes the hole, can diminish defects of the above two methods and it may represent more satisfactorily the distribution of the local stress concentration around the hole than the other methods which employed linear elements such as in the analysis by Samuel or Redwood. This study presents the effects of moments, shears, and eccentricities of a hole on the distribution of the normal stresses calculated by using the proposed finite element method. Consequently, it is found that the variations of shear force and hole depth give significant effects on the normal stresses around a hole, while the variations of eccentricities of the hole provide a little effect on them. The regression coefficients resulted from the multiple linear regression may be used for estimating the normal stresses around any arbitrary hole in the web of a beam, since the normal stresses guessed by this regression coefficient equation match well the results by the finite element method except the case of large eccentricity.

  • PDF

Shape Design Optimization using Isogeometric Analysis Method (등기하 해석법을 이용한 형상 최적 설계)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.216-221
    • /
    • 2008
  • Shape design optimization for linear elasticity problem is performed using isogeometric analysis method. In many design optimization problems for real engineering models, initial raw data usually comes from CAD modeler. Then designer should convert this CAD data into finite element mesh data because conventional design optimization tools are generally based on finite element analysis. During this conversion there is some numerical error due to a geometry approximation, which causes accuracy problems in not only response analysis but also design sensitivity analysis. As a remedy of this phenomenon, the isogeometric analysis method is one of the promising approaches of shape design optimization. The main idea of isogeometric analysis is that the basis functions used in analysis is exactly same as ones which represent the geometry, and this geometrically exact model can be used shape sensitivity analysis and design optimization as well. In shape design sensitivity point of view, precise shape sensitivity is very essential for gradient-based optimization. In conventional finite element based optimization, higher order information such as normal vector and curvature term is inaccurate or even missing due to the use of linear interpolation functions. On the other hands, B-spline basis functions have sufficient continuity and their derivatives are smooth enough. Therefore normal vector and curvature terms can be exactly evaluated, which eventually yields precise optimal shapes. In this article, isogeometric analysis method is utilized for the shape design optimization. By virtue of B-spline basis function, an exact geometry can be handled without finite element meshes. Moreover, initial CAD data are used throughout the optimization process, including response analysis, shape sensitivity analysis, design parameterization and shape optimization, without subsequent communication with CAD description.

  • PDF

Yonsei Evolutionary Population Synthesis for Old Stellar Systems

  • Chung, Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제37권1호
    • /
    • pp.31.2-31.2
    • /
    • 2012
  • We present the Yonsei Evolutionary Population Synthesis (YEPS) models for spectroscopic and photometric evolutions of simple and composite stellar populations. The models are based on the most up-to-date Yonsei-Yale stellar evolutionary tracks and BaSel 3.1 flux libraries, and provide integrated spectroscopic quantities of Lick/IDS system including high-order Balmer absorption-lines. Special care has been taken to incorporate the systematic variation of horizontal branch (HB) morphology as functions of metallicity, age, alpha-element mixture, and helium abundance of simple stellar populations. Our models for normal-helium stellar populations indicate that the realistic modeling of HB and alpha-element brings about 5 Gyr and 0.1 dex differences in age and metallicity estimations, respectively, compared to those without these effects. The HB effect does not depend on the specific choice of stellar libraries and alpha-element enhancements, and this effect is non-negligible even in the metal sensitive absorption indices, such as Mg2 and Mg b. Comparison of the models to observations reveals that the HB and alpha-element effects are critical in understanding otherwise inexplicable phenomena found in globular cluster systems in the Milky Way and nearby galaxies, including the observed bimodality of the line strengths of globular clusters in massive galaxies. In addition, we found that helium-enhanced stellar populations, which are the major sources of extreme HB stars, bring about increased FUV, NUV fluxes, and thus the model colors of those filters become extremely blue. Age dating based on the YEPS model with normal-helium stellar populations reveals that the evidence for 'downsizing' of elliptical galaxies is found not only in the local field but also in Coma cluster, and that the mean age of elliptical galaxies in Coma cluster is about 1.4 Gyr younger than the mean age of those in the local field. We also find that our models with helium-enhanced subpopulations can naturally reproduce the strong UV-upturns observed in giant elliptical galaxies assuming an age similar to that of old GCs in the Milky Way.

  • PDF

Free vibration analysis of large sag catenary with application to catenary jumper

  • Klaycham, Karun;Nguantud, Panisara;Athisakul, Chainarong;Chucheepsakul, Somchai
    • Ocean Systems Engineering
    • /
    • 제10권1호
    • /
    • pp.67-86
    • /
    • 2020
  • The main goal of this study is to investigate the free vibration analysis of a large sag catenary with application to the jumper in hybrid riser system. The equation of motion is derived by using the variational method based on the virtual work principle. The finite element method is applied to evaluate the numerical solutions. The large sag catenary is utilized as an initial configuration for vibration analysis. The nonlinearity due to the large sag curvature of static configuration is taken into account in the element stiffness matrix. The natural frequencies of large sag catenary and their corresponding mode shapes are determined by solving the eigenvalue problem. The numerical examples of a large sag catenary jumpers are presented. The influences of bending rigidity and large sag shape on the free vibration behaviors of the catenary jumper are provided. The results indicate that the increase in sag reduces the jumper natural frequencies. The corresponding mode shapes of the jumper with large sag catenary shape are comprised of normal and tangential displacements. The large sag curvature including in the element stiffness matrix increases the natural frequency especially for a case of very large sag shape. Mostly, the mode shapes of jumper are dominated by the normal displacement, however, the tangential displacement significantly occurs around the lowest point of sag. The increase in degree of inclination of the catenary tends to increase the natural frequencies.

Analytical and finite element method for the bending analysis of the thick porous functionally graded sandwich plate including thickness stretching effect

  • Imad Benameur;Youcef Beldjelili;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제85권5호
    • /
    • pp.593-605
    • /
    • 2023
  • This work presents a comparison between analytical and finite element analysis for bending of porous sandwich functionally graded material (FGM) plates. The plate is rectangular and simply supported under static sinusoidal loading. Material properties of FGM are assumed to vary continuously across the face sheets thickness according to a power-law function in terms of the volume fractions of the constituents while the core is homogeneous. Four types of porosity are considered. A refined higher-order shear with normal deformation theory is used. The number of unknowns in this theory is five, as against six or more in other shear and normal deformation theories. This theory assumes the nonlinear variation of transverse shear stresses and satisfies its nullity in the top and bottom surfaces of the plate without the use of a shear correction factor. The governing equations of equilibrium are derived from the virtual work principle. The Navier approach is used to solve equilibrium equations. The constitutive law of the porous FGM sandwich plate is implemented for a 3D finite element through a subroutine in FORTRAN (UMAT) in Abaqus software. Results show good agreement between the finite element model and the analytical method for some results, but the analytical method keeps giving symmetric results even with the thickness stretching effect and load applied to the top surface of the sandwich.

Systematic Investigation of the Effects of Macro-elements and Iron on Soybean Plant Response to Fusarium oxysporum Infection

  • Cai, Hongsheng;Tao, Nan;Guo, Changhong
    • The Plant Pathology Journal
    • /
    • 제36권5호
    • /
    • pp.398-405
    • /
    • 2020
  • Nutrient manipulation is a promising strategy for controlling plant diseases in sustainable agriculture. Although many studies have investigated the relationships between certain elements and plant diseases, few have comprehensively explored how differing mineral nutrition levels might affect plant-fungal pathogen interactions, namely plant susceptibility and resistance. Here, we systematically explored the effects of the seven mineral elements that plants require in the greatest amounts for normal development on the susceptibility of soybean plants (Glycine max) to Fusarium oxysporum infection in controlled greenhouse conditions. Nitrogen (N) negligibly affected plant susceptibility to infection in the range 4 to 24 mM for both tested soybean cultivars. At relatively high concentrations, phosphorus (P) increased plant susceptibility to infection, which led to severely reduced shoot and root dry weights. Potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), and iron (Fe) induced plant resistance to infection as their concentrations were increased. For K and Ca, moderate concentrations had a positive effect on plant resistance to the pathogen, whereas relatively high doses of either element adversely affected plant growth and promoted disease symptoms. Further experiments were conducted, assessing disease suppression by selected combinations of macro-elements and Fe at screened concentrations, i.e., K (9 mM) plus Fe (0.2 mM), and S (4 mM) plus Fe (0.2 mM). The disease index was significantly reduced by the combination of K plus Fe. In conclusion, this systematic investigation of soybean plant responses to F. oxysporum infection provides a solid basis for future environmentally-friendly choices for application in soybean disease control programs.

Finite element development of a Beam-column connection with CFRP sheets subjected to monotonic and cyclic loading

  • Rahimipour, Arash;Hejazi, Farzad;Vaghei, Ramin;Jaafar, Mohd Saleh
    • Computers and Concrete
    • /
    • 제18권6호
    • /
    • pp.1083-1096
    • /
    • 2016
  • Beam-column joints are recognized as the weak points of reinforcement concrete frames. The ductility of reinforced concrete (RC) frames during severe earthquakes can be measured through the dissipation of large energy in beam-column joint. Retrofitting and rehabilitating structures through proper methods, such as carbon fiber reinforced polymer (CFRP), are required to prevent casualties that result from the collapse of earthquake-damaged structures. The main challenge of this issue is identifying the effect of CFRP on the occurrence of failure in the joint of a cross section with normal ductility. The present study evaluates the retrofitting method for a normal ductile beam-column joint using CFRP under monotonic and cyclic loads. Thus, the finite element model of a cross section with normal ductility and made of RC is developed, and CFRP is used to retrofit the joints. This study considers three beam-column joints: one with partial CFRP wrapping, one with full CFRP wrapping, and one with normal ductility. The two cases with partial and full CFRP wrapping in the beam-column joints are used to determine the effect of retrofitting with CFRP wrapping sheets on the behavior of the beam-column joint confined by such sheets. All the models are subjected to monotonic and cyclic loading. The final capacity and hysteretic results of the dynamic analysis are investigated. A comparison of the dissipation energy graphs of the three connections shows significant enhancement in the models with partial and full CFRP wrapping. An analysis of the load-displacement curves indicates that the stiffness of the specimens is enhanced by CFRP sheets. However, the models with both partial and full CFRP wrapping exhibited no considerable improvement in terms of energy dissipation and stiffness.

A facial expressions recognition algorithm using image area segmentation and face element (영역 분할과 판단 요소를 이용한 표정 인식 알고리즘)

  • Lee, Gye-Jeong;Jeong, Ji-Yong;Hwang, Bo-Hyun;Choi, Myung-Ryul
    • Journal of Digital Convergence
    • /
    • 제12권12호
    • /
    • pp.243-248
    • /
    • 2014
  • In this paper, we propose a method to recognize the facial expressions by selecting face elements and finding its status. The face elements are selected by using image area segmentation method and the facial expression is decided by using the normal distribution of the change rate of the face elements. In order to recognize the proper facial expression, we have built database of facial expressions of 90 people and propose a method to decide one of the four expressions (happy, anger, stress, and sad). The proposed method has been simulated and verified by face element detection rate and facial expressions recognition rate.

Analysis of Tool Wear in Sheet Metal Shearing (판재 전단 가공에서 금형의 마멸 해석)

  • 고대철;김태형;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.805-810
    • /
    • 1997
  • In this paper the technique to predict tool were theoretically in the sheet metal shearing process is suggested. The were in sheet metal tool affects the tolerances of final parts, metal flows and costs of processes. In order to predict the tool were the deformation of workpiece during the process is analyzed by using non-isothermal finite element program. The ductile fracture criterion and the element kill method are also used to estimate if and where a fracture will occur and to investigate the features of the sheared surface in shearing process. Results obtained form finite element simulation such as node velocities and node forces are transformed into sliding velocity and normal pressure on tool monitoring points respectively. The monitoring points are automatically generated and the were rates on these points are accumulated during a process. It is assumed that the wear depth on the tool surface are linear function of the lot sizes based upon the known experimental results. The influence of clearance between die and punch upon tool wear is were is also discussed during the process.

  • PDF