• Title/Summary/Keyword: Normal Stiffness

Search Result 406, Processing Time 0.026 seconds

Flexural performance of cold-formed square CFST beams strengthened with internal stiffeners

  • Zand, Ahmed W. Al;Badaruzzaman, W.H. Wan;Ali, Mustafa M.;Hasan, Qahtan A.;Al-Shaikhli, Marwan S.
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.123-139
    • /
    • 2020
  • The tube outward local buckling of Concrete-Filled Steel Tube (CFST) beam under high compression stress is still considered a critical problem, especially for steel tubes with a slender section compared to semi-compact and compact sections. In this study, the flexural performance of stiffened slender cold-formed square tube beams filled with normal concrete was investigated. Fourteen (14) simply supported CFST specimens were tested under static bending loads, stiffened with different shapes and numbers of steel stiffeners that were provided at the inner sides of the tubes. Additional finite element (FE) CFST models were developed to further investigate the influence of using internal stiffeners with varied thickness. The results of tests and FE analyses indicated that the onset of local buckling, that occurs at the top half of the stiffened CFST beam's cross-section at mid-span was substantially restricted to a smaller region. Generally, it was also observed that, due to increased steel area provided by the stiffeners, the bending capacity, flexural stiffness and energy absorption index of the stiffened beams were significantly improved. The average bending capacity and the initial flexural stiffness of the stiffened specimens for the various shapes, single stiffener situations have increased of about 25% and 39%, respectively. These improvements went up to 45% and 60%, for the double stiffeners situations. Moreover, the bending capacity and the flexural stiffness values obtained from the experimental tests and FE analyses validated well with the values computed from equations of the existing standards.

Age-related Geometric Effects on the Human Lumbar Spine by the Finite Element Method (유한 요소법을 이용한 나이에 따른 척추의 형상 및 구조변화의 효과)

  • Kim Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.285-293
    • /
    • 2000
  • Age-related changes in the geometry of human lumbar spine would lead to changes of its mechanical behaviors. To investigate the effects of the geometric changes, no age-related changes in the material/mechanical properties were considered. Using the finite element method. two age-related models of lumbar spine segments (L3-L4) were constructed. The annulus of the models was modeled as laminate composite elements with 16 layers and 6 materials. The spinal stiffness and facet reaction of the lumbar spine increased with the age-related geometric changes in various combined loadings. Fiber and transverse tensile strains of the inner annulus. cancellous bone stress and end-plate stress decreased with the age-related geometric changes whereas fiber/layer compressive strains of the annulus. facet reaction. ligament reaction and end-plate rigidity increased. Consequently, it appears that in the normal age-related deterioration of discs, the age-related geometric change contributes to the increase of spinal stiffness (the decrease in range of the motion segment), preventing an excessive deformation of the disc.

  • PDF

Vibroacoustic response of thin power law indexed functionally graded plates

  • Baij Nath Singh;Vinayak Ranjan;R.N. Hota
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.299-318
    • /
    • 2024
  • The main objective of this paper is to compute the far-field acoustic radiation (sound radiation) of functionally graded plates (FGM) loaded by sinusoidally varying point load subjected to the arbitrary boundary condition is carried out. The governing differential equations for thin functionally graded plates (FGM) are derived using classical plate theory (CPT) and Rayleigh integral using the elemental radiator approach. Four cases, segregated on power-law index k=0,1,5,10, are studied. A novel approach is illustrated to compute sound fields of vibrating FGM plates using the physical neutral surface with an elemental radiator approach. The material properties of the FGM plate for all cases are calculated considering the power law indexes. An in-house MATLAB code is written to compute the natural frequencies, normal surface velocities, and sound radiation fields are analytically calculated using semi-analytical formulation. Ansys is used to validate the computed sound power level. The parametric effects of the power law index, modulus ratios, different constituent of FGM plates, boundary conditions, damping loss factor on the sound power level, and radiation efficiency is illustrated. This work is the benchmark approach that clearly explains how to calculate acoustic fields using a solid layered FGM model in ANSYS ACT. It shows that it is possible to asymptotically stabilize the structure by controlling the intermittent layers' stiffness. It is found that sound fields radiated by the elemental radiators approach in MATLAB, ANSYS and literatures are in good agreement. The main novelty of this research is that the FGM plate is analyzed in the low-frequency range, where the stiffness-controlled region governs the whole analysis. It is concluded that a clamped mono-ceramic FGM plate radiates a lesser sound power level and higher radiation efficiency than a mono-metallic or metal-rich FGM plate due to higher stiffness. It is found that change in damping loss factor does not affect the same constituents of FGM plates but has significant effects on the different constituents of FGM plates.

A Parametric Study on Intermediate Diaphragms of Steel-Box-Girder Bridges (강박스 거더교의 내부 다이아프램에 관한 매개변수 연구)

  • Park, Nam Hoi;Lim, Da Soo;Cho, Sun Kyu;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.231-239
    • /
    • 2003
  • Many box girder bridges have been constructed during the past several decades due to their large bending and torsional rigidities as well as aesthetic considerations. However, box girders have shortcoming in that the cross section distorts under an eccentric loading and warps out of the section plane. Therefore, in order to reduce distortional stresses such as distortional warping and transverse bending normal stresses, diaphragms were generally installed in the box girders. Shapes of the diaphragms in steel-box-girder bridges constructed up to date were solid-plate, frame, and truss types. The objectives of this study using parametric study were to evaluate the appropriate stiffness ratio of intermediate diaphragms and then to propose the effective spacing and numbers of intermediate diaphragms based on the evaluated stiffness ratio. Target bridges for this study were straight continuous span bridges with a single-cell steel box section. The parameters for the parametric study were the shape of box section, the span numbers, the equivalent span length, the stiffness of intermediate diaphragms, and the spacing of intermediate diaphragms. From the results of the parametric study, the effective spacing and numbers as well as the stiffness ratio of the intermediate diaphragms will be presented.

Effects of Chitosan on Fracture Healing in Fractured Rat Model. (골절모델 쥐에서 키토산 투여가 골절치유에 미치는 영향)

  • 서정욱;김은주;한상섭
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.385-390
    • /
    • 2004
  • Chitosan is abundant polysaccharide polymer in nature Chitosan has been the subject of much research regarding its potential as a nutritional adjunct and pharmaceutical ingredient. In the present study, we examined fracture-healing process with chitosan administration and low calcium diet in rats. Left femur was fractured and fixed with intramedullary pin. The rats were fed normal diet or low calcium diet and administered chitosan with the doses of 0, 50, 100 and 150ng/ml orally 5 times a week for 10 weeks. Soft X-ray and mechanical testing of all fractured femora was taken. Radiographical finding showed that the callus formation and process of fracture healing was present in all the fractured femora. Mechanical testing indicated that the maximum load and stiffness of femur in rat fed low calcium diet was lower than those of that in rat fed normal diet. No difference in maximum load and stiffness of fractured femora in chitosan treated rat were observed as compared to vehicle treated rat. Chitosan or/and low calcium diet did not affect the ratio of fractured/unfractured femur about maximum load and stiffness. The results suggest that chitosan dose not affect the bone mechanical strength and the process of fracture healing. Low calcium diet does decrease the bone mechanical strength.

Effects of Disc Degeneration on Biomechanical Behaviors of the Intevertebral Disc: A Biomechanical Analysis (퇴행성으로 인한 추간판의 생체역학적 거동에 대한 분석)

  • Lee Hyun-Ok;Lee Sung-Jae;Shin Jung-Woog;Shin Tae-Jin
    • The Journal of Korean Physical Therapy
    • /
    • v.12 no.3
    • /
    • pp.455-467
    • /
    • 2000
  • The purpose of this study was to analyse the effects of disc degeneration on the biomechanical behaviors of the intervertebral disc in term of axial displacement, intradiscal pressure. disc bulge at the 1.4-1.5 functional spinal unit(FSU). The degeneration is divided 4 grade by initial intradiscal pressure: normal: 135kPa. mild: 107kPa. moderate: 47kPa, severe: 15kPa, The predicted results were follows: 1. The magnitude of the bulge is found to be maximum at the anterior, minimum at the postero-lateral portion. The bulge of lateral, postero-lateral is found to be maximum in severe grade. followed by moderate. mild, normal grade. 2. Tho displacement was increased with increasing compressive load in all four grades.'rho stiffness of disc was found to be reduced by progressing from normal to severe grade. 3. The intradiscal pressure was increased nearly linearly with increasing compressive load in normal and mild grade. But the increasing rate in moderate and severe grade was showed apparently different from nomal and mild grade. Specially, it was increased very slightly in severe grade. In conclusion, decreased intradiscal pressure resulted in increase of axial displacement and disc bulge with compressive load increasing. these may compromise the nerve root impingement or irritation. Therefore posture and activities must be focus to reduce compressive load applied on the back or disc.

  • PDF

Bending analysis of porous microbeams based on the modified strain gradient theory including stretching effect

  • Lemya Hanifi Hachemi Amar;Abdelhakim Kaci;Aicha Bessaim;Mohammed Sid Ahmed Houari;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.225-238
    • /
    • 2024
  • In this paper, a quasi-3D hyperbolic shear deformation theory for the bending responses of a functionally graded (FG) porous micro-beam is based on a modified couple stress theory requiring only one material length scale parameter that can capture the size influence. The model proposed accounts for both shear and normal deformation effects through an illustrative variation of all displacements across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the micro-beam. The effective material properties of the functionally graded micro-beam are assumed to vary in the thickness direction and are estimated using the homogenization method of power law distribution, which is modified to approximate the porous material properties with even and uneven distributions of porosity phases. The equilibrium equations are obtained using the virtual work principle and solved using Navier's technique. The validity of the derived formulation is established by comparing it with the ones available in the literature. Numerical examples are presented to investigate the influences of the power law index, material length scale parameter, beam thickness, and shear and normal deformation effects on the mechanical characteristics of the FG micro-beam. The results demonstrate that the inclusion of the size effects increases the microbeams stiffness, which consequently leads to a reduction in deflections. In contrast, the shear and normal deformation effects are just the opposite.

Radiographic Evaluation of Stiffness of Articular Eminence in the Temporomandibular Joint(TMJ) of Korean Using Dental cone-beam CT (한국인의 측두하악관절에서 Dental cone-beam CT를 이용한 관절융기의 경사도에 대한 방사선학적 평가)

  • Oh, Sang-Chun;Han, Ji-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.2
    • /
    • pp.163-173
    • /
    • 2013
  • When the mandible performs opening movement, the condyle-disk complex conducts sliding movement along the articular eminence. Thus, anatomic configuration of articular eminence is very important to normal movement of TMJ. The purpose of this study was to measure the posterior slope of the articular eminence and evaluate the effect of a pathologic bone change in the condylar head on the stiffness of articular eminence, and compare the differences of the articular eminence slope by gender and age using dental cone-beam CT. As using i-CAT Cone-Beam Computed Tomography, the CT images of 204 TMJs of 102 patients(43 men and 59 women, mean age: 37.7 years) who were diagnosed at Wonkwang University Sanbon Dental Hospital were evaluated. All images were converted into a TMJ analysis mode to observe the continuous sagittal section images and coronal section images of the joints. To observe and assess bone changes in the condyle, three dentists measured the stiffness of the articular eminence on the same images, and when two of the three dentists agreed on their reading, these results were adopted and recorded. The articular eminence slope, considering the condylar anatomic configuration, was measured in three regions, namely, lateral part, central part, and medial part of the condyle. In the cases of a normal condyle(NCBC) and a condyle(CBC) with bone change, the articular eminence slopes were $57.0^{\circ}$(NCBC) and $51.8^{\circ}$(CBC) at the medial part, $57.9^{\circ}$(NCBC) and $52.4^{\circ}$(CBC) at the central part, and $55.1^{\circ}$(NCBC) and $49.5^{\circ}$(CBC) at the lateral part of the condyle. And the articular eminence slope of the condyle with bone change demonstrated less steepness than that of normal condyle (p<0.05). The articular eminence slope showed mediolaterally that it was the steepest at the central, followed by at the medial, and at the lateral (p<0.05). There were no significant differences by the gender and the age (p.0.05).

Flexural Behavior of Dual Concrete Beams Using Fiber Reinforced Concrete at Tensile Parts (섬유보강 고인장강도 콘크리트를 이용한 이중 콘크리트 보의 휨 거동 해석)

  • 박대효;부준성;조백순
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.584-592
    • /
    • 2001
  • The cracks are developed in reinforced concrete(RC) beams at the early stage of service load because of the relatively small tensile strength of concrete. The structural strength and stiffness are decreased by reduction of tensile resistance capacity of concrete due to the developed cracks. Using the fiber reinforced concrete that is increased the flexural strength and tensile strength at tensile part can enhance the strength and stiffness of concrete structures and decrease the tensile flexural cracks and deflections. Therefore, the RC beams used of the fiber reinforced concrete at. tensile part ensure the safety and serviceability of the concrete structures. In this work, analytical model of a dual concrete beams composed of the normal strength concrete at compression part and the high tension strength concrete at tensile part is developed by using the equilibrium conditions of forces and compatibility conditions of strains. Three groups of test beams that are formed of one reinforced concrete beam and two dual concrete beams for each steel reinforcement ratio are tested to examine the flexural behavior of dual concrete beams. The comparative study of total nine test beams is shown that the ultimate load of a dual concrete beams relative to the RC beams is increased in approximately 30%. In addition, the flexural rigidity, as used here, referred to the slope of load-deflection curves is increased and the deflection is decreased.

Analysis of Inclined Crack Extension in Orthotropic Solids Under Biaxial Loading (2축하중을 받는 직교이방성체내 경사균열진전의 해석)

  • Lim, Won-Kyun;Choi, Seung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.993-1000
    • /
    • 2002
  • The objective of this work is to develop the capability to analyze accurately the mixed-mode propagation of a crack in composite structures with elastic orthotropic material stiffness properties and anisotropic material strength characteristics. In order to develop the capability to fully analyze fracture growth and failure in anisotropic structures, we examined the fundamental problem of mixed mode fracture by carrying out the analysis on orthotropic materials with an inclined crack subject to biaxial loading. Our goal here is to include an additional term in the asymptotic expansion of the crack tip stress field and to show that the direction of crack initiation can be significantly affected by that term. We employ the normal stress ratio theory to predict the direction of crack extension. It is shown that the angle of crack extension can be altered by horizontal loads and the use of second order term in the series expansion is important f3r the accurate determination of crack growth direction.