• Title/Summary/Keyword: Normal Sinus Rhythm(NSR)

Search Result 7, Processing Time 0.02 seconds

Characterization of Premature Ventricular Contraction by K-Means Clustering Learning Algorithm with Mean-Reverting Heart Rate Variability Analysis (평균회귀 심박변이도의 K-평균 군집화 학습을 통한 심실조기수축 부정맥 신호의 특성분석)

  • Kim, Jeong-Hwan;Kim, Dong-Jun;Lee, Jeong-Whan;Kim, Kyeong-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1072-1077
    • /
    • 2017
  • Mean-reverting analysis refers to a way of estimating the underlining tendency after new data has evoked the variation in the equilibrium state. In this paper, we propose a new method to interpret the specular portraits of Premature Ventricular Contraction(PVC) arrhythmia by applying K-means unsupervised learning algorithm on electrocardiogram(ECG) data. Aiming at this purpose, we applied a mean-reverting model to analyse Heart Rate Variability(HRV) in terms of the modified poincare plot by considering PVC rhythm as the component of disrupting the homeostasis state. Based on our experimental tests on MIT-BIH ECG database, we can find the fact that the specular patterns portraited by K-means clustering on mean-reverting HRV data can be more clearly visible and the Euclidean metric can be used to identify the discrepancy between the normal sinus rhythm and PVC beats by the relative distance among cluster-centroids.

Electrocardiographic characteristics of significant factors of detected atrial fibrillation using WEMS

  • Kim, Min Soo;Kim, Yoon Nyun;Cho, Young Chang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.6
    • /
    • pp.37-46
    • /
    • 2015
  • The wireless electrocardiographic monitoring system(WDMS) is designed to be long term monitoring for the early detection of cardiac disorders. The current version of the WDMS can identify two types of cardiac rhythms in real-time, such as atrial fibrillation(AF) and normal sinus rhythm(NSR), which are very important to track cardiac-rhythm disorders. In this study, we proposed the analysis method to discriminate the characteristics statistically evaluated in both time and frequency domains between AF and NSR using various parameters in the heart rate variability(HRV). And we applied various ECG detection methods (e.g., difference operation method) and compared the results with those of the discrete wavelet transform(DWT) method. From the statistically results, we found that the parameters such as STD RR, STD HR, RMSSD, NN50, pNN50, RR Trian, and TNN(p<0.05) are significantly different between the AF and NSR patients in time domain. On the other hand, the frequency domain analysis results showed a significant difference in VLF power($ms^2$), LF power($ms^2$), HF power($ms^2$), VLF(%), LF(%), and HF(%). In particular, the parameters such as STD RR, RMSSD, NN50, pNN50, VLF power, LF power and HF power were considered as the most useful parameters in both AF and NSR patient groups. Our proposed method can be efficiently applied to early detection of abnormal conditions and prevent the such abnormals from becoming serious.

Extracting Fuzzy Rules for Classifying Ventricular Tachycardia/Ventricular Fibrillation Based on NEWFM (심실빈맥/심실세동 분류를 위한 NEWFM 기반의 퍼지규칙 추출)

  • Shin, Dong-Kun;Lee, Sang-Hong;Lim, Joon-S.
    • Journal of Internet Computing and Services
    • /
    • v.10 no.2
    • /
    • pp.179-186
    • /
    • 2009
  • This paper presents an approach to classify normal and Ventricular Tachycardia/Ventricular Fibrillation(VT/VF) from the Creighton University Ventricular Tachyarrhythmia DataBase(CUDB) using the neural network with weighted fuzzy membership functions(NEWFM). In the first step, wavelet transform is used for producing input values which are used in the next step. In the second step, two numbers of input features are extracted by phase space reconstruction method and peak extraction method using coefficients produced by wavelet transform in the previous step. NEWFM classifies normal and VT/VF beats using two numbers of input features, and then the accuracy rate is 90.13%.

  • PDF

Quantitative Assessment of Coronary Artery Diameter in Patients with Atrial Fibrillation and Normal Sinus Rhythm (심방세동 환자와 정상 심전도 환자의 관상동맥 직경 정량적 평가)

  • Seo, Young-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.567-574
    • /
    • 2022
  • Coronary artery disease (CAD) and atrial fibrillation (AF) are known to share many risk factors. In particular, in the case of acute coronary syndrome, it may be difficult to clearly determine the diameter of the vessel due to complete occlusion of the vessel and thrombus. Thus, the relationship between the diameter of the coronary arteries was evaluated to be used as a reference data before the treatment of coronary arteries and drug selection in patients with AF. From January 2020 to August 2022, images of coronary angiography (CAG) with AF and normal sinus rhythm (NSR) on electrocardiography were target. In both subjects, images of normal coronary artery without lesions as a result of CAG were used. For all vessels, the diameters of the vessels were measured by dividing them into proximal, middle, and distal parts, and the measured diameters were divided by the average for evaluation. As a result of analyzing the left anterior descending artery diameter, the vessel diameter of the AF patient was 2.24±0.26 mm, which was smaller than that of the NSR patient, 2.86±0.38 mm, and was statistically significant. (p<0.001) As a result of analyzing the left circumflex artery diameter, the vessel diameter of the AF patient was 2.34±0.28 mm, which was smaller than the vessel diameter of the NSR patient, 2.87±0.29 mm, and was statistically significant. (p<0.001) As a result of analyzing the diameter of the right coronary artery, the vessel diameter of the AF patient was 2.68±0.5 mm, which was smaller than the vessel diameter of the NSR patient, 3.35±0.4 mm, and was statistically significant. (p<0.001) Considering that the coronary artery size of AF patients is significantly smaller than the coronary vessel size of NSR patients, it is considered as a useful study to be used as a reference for evaluating coronary artery diameter when the arrhythmia is AF. In particular, it is considered to be a study that can be helpful in diagnosing lesions, using drugs before and after surgery, and choosing to use auxiliary devices such as intravascular ultrasound.

Detecting Ventricular Tachycardia/Fibrillation Using Neural Network with Weighted Fuzzy Membership Functions and Wavelet Transforms (가중 퍼지소속함수 기반 신경망과 웨이블릿 변환을 이용한 심실 빈맥/세동 검출)

  • Shin, Dong-Kun;Zhang, Zhen-Xing;Lee, Sang-Hong;Lim, Joon-S.;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.19-26
    • /
    • 2009
  • This paper presents an approach to classify normal and ventricular tachycardia/fibrillation(VT/VF) from the Creighton University Ventricular Tachyarrhythmia Database(CUDB) using the neural network with weighted fuzzy membership functions(NEWFM) and wavelet transforms. In the first step, wavelet transforms are used to obtain the detail coefficients at levels 3 and 4. In the second step, all of detail coefficients d3 and d4 are classified into four intervals, respectively, and then the standard deviations of the specific intervals are used as eight numbers of input features of NEWFM. NEWFM classifies normal and VT/VF beats using eight numbers of input features, and then the accuracy rate is 90.1%.

Support Vector Machine Based Arrhythmia Classification Using Reduced Features

  • Song, Mi-Hye;Lee, Jeon;Cho, Sung-Pil;Lee, Kyoung-Joung;Yoo, Sun-Kook
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.571-579
    • /
    • 2005
  • In this paper, we proposed an algorithm for arrhythmia classification, which is associated with the reduction of feature dimensions by linear discriminant analysis (LDA) and a support vector machine (SVM) based classifier. Seventeen original input features were extracted from preprocessed signals by wavelet transform, and attempts were then made to reduce these to 4 features, the linear combination of original features, by LDA. The performance of the SVM classifier with reduced features by LDA showed higher than with that by principal component analysis (PCA) and even with original features. For a cross-validation procedure, this SVM classifier was compared with Multilayer Perceptrons (MLP) and Fuzzy Inference System (FIS) classifiers. When all classifiers used the same reduced features, the overall performance of the SVM classifier was comprehensively superior to all others. Especially, the accuracy of discrimination of normal sinus rhythm (NSR), arterial premature contraction (APC), supraventricular tachycardia (SVT), premature ventricular contraction (PVC), ventricular tachycardia (VT) and ventricular fibrillation (VF) were $99.307\%,\;99.274\%,\;99.854\%,\;98.344\%,\;99.441\%\;and\;99.883\%$, respectively. And, even with smaller learning data, the SVM classifier offered better performance than the MLP classifier.

SVM Classifier for the Detection of Ventricular Fibrillation (SVM 분류기를 통한 심실세동 검출)

  • Song, Mi-Hye;Lee, Jeon;Cho, Sung-Pil;Lee, Kyoung-Joung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.27-34
    • /
    • 2005
  • Ventricular fibrillation(VF) is generally caused by chaotic behavior of electrical propagation in heart and may result in sudden cardiac death. In this study, we proposed a ventricular fibrillation detection algorithm based on support vector machine classifier, which could offer benefits to reduce the teaming costs as well as good classification performance. Before the extraction of input features, raw ECG signal was applied to preprocessing procedures, as like wavelet transform based bandpass filtering, R peak detection and segment assignment for feature extraction. We selected input features which of some are related to the rhythm information and of others are related to wavelet coefficients that could describe the morphology of ventricular fibrillation well. Parameters for SVM classifier, C and ${\alpha}$, were chosen as 10 and 1 respectively by trial and error experiments. Each average performance for normal sinus rhythm ventricular tachycardia and VF, was 98.39%, 96.92% and 99.88%. And, when the VF detection performance of SVM classifier was compared to that of multi-layer perceptron and fuzzy inference methods, it showed similar or higher values. Consequently, we could find that the proposed input features and SVM classifier would one of the most useful algorithm for VF detection.