• Title/Summary/Keyword: Normal Deformation

Search Result 555, Processing Time 0.026 seconds

Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory

  • Adim, Belkacem;Daouadji, Tahar Hassaine
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.223-244
    • /
    • 2016
  • In this paper, a higher order shear and normal deformation theory is presented for functionally graded material (FGM) plates. By dividing the transverse displacement into bending, shear and thickness stretching parts, the number of unknowns and governing equations for the present theory is reduced, significantly facilitating engineering analysis. Indeed, the number of unknown functions involved in the present theory is only five, as opposed to six or even greater numbers in the case of other shear and normal deformation theories. The present theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of ail displacements across the thickness and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any shear correction factor. Equations of motion are derived from Hamilton's principle. Analytical solutions for the bending and free vibration analysis are obtained for simply supported plates. The obtained results are compared with three-dimensional and quasi- three-dimensional solutions and those predicted by other plate theories. It can be concluded that the present theory is not only accurate but also simple in predicting the bending and free vibration responses of functionally graded plates.

Application of a fixed Eulerian mesh-based scheme based on the level set function generated by virtual nodes to large-deformation fluid-structure interaction

  • Hashimoto, Gaku;Ono, Kenji;Okuda, Hiroshi
    • Interaction and multiscale mechanics
    • /
    • v.5 no.3
    • /
    • pp.287-318
    • /
    • 2012
  • We apply a partitioned-solution (iterative-staggered) coupling method based on a fixed Eulerian mesh with the level set function to a large-deformation fluid-structure interaction (FSI) problem where a large-deformable thin structure moves in a high-speed flow field, as an airbag does during deployment. This method combines advanced fluid and structure solvers-specifically, the constrained interpolation profile finite element method (CIP-FEM) for fluid Eulerian mesh and large-deformable structural elements for Lagrangian structural mesh. We express the large-deformable interface as a zero isosurface by the level set function, and introduce virtual nodes with level sets and structural normal velocities to generate the level set function according to the large-deformable interfacial geometry and enforce the kinematic condition at the interface. The virtual nodes are located in the direction normal to the structural mesh. It is confirmed that application of the method to unfolded airbag deployment simulation shows the adequacy of the method.

Computational design of an automotive twist beam

  • Aalae, Benki;Abderrahmane, Habbal;Gael, Mathis
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.215-225
    • /
    • 2016
  • In recent years, the automotive industry has known a remarkable development in order to satisfy the customer requirements. In this paper, we will study one of the components of the automotive which is the twist beam. The study is focused on the multicriteria design of the automotive twist beam undergoing linear elastic deformation (Hooke's law). Indeed, for the design of this automotive part, there are some criteria to be considered as the rigidity (stiffness) and the resistance to fatigue. Those two criteria are known to be conflicting, therefore, our aim is to identify the Pareto front of this problem. To do this, we used a Normal Boundary Intersection (NBI) algorithm coupling with a radial basis function (RBF) metamodel in order to reduce the high calculation time needed for solving the multicriteria design problem. Otherwise, we used the free form deformation (FFD) technique for the generation of the 3D shapes of the automotive part studied during the optimization process.

DYNAMIC ANALYSIS OF A MECHANICAL SYSTEM WITH FLEXIBLE BODIES (유연성을 가진 기계 시스템의 동역학 해석)

  • Park, T.W.;Seo, J.H.;Chung, W.S.;Chae, J.S.;Seo, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.422-427
    • /
    • 2001
  • The component mode synthesis method allows the elastic deformation of each component in the flexible multibody system by a sum of modes and modal coordinates. This paper focuses on the selection of boundary conditions and deformation modes for redundantly constrained flexible components in mechanical system dynamics. The result of a flexible body dynamic analysis with only normal modes is used to identify proper boundary conditions of a static modes and a desired set of static modes which will be used in the final model. A simple four bar mechanism is used to explain the procedure and a space satellite with solar panels is analyzed using the proposed method.

  • PDF

A new higher-order shear and normal deformation theory for functionally graded sandwich beams

  • Bennai, Riadh;Atmane, Hassen Ait;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.521-546
    • /
    • 2015
  • A new refined hyperbolic shear and normal deformation beam theory is developed to study the free vibration and buckling of functionally graded (FG) sandwich beams under various boundary conditions. The effects of transverse shear strains as well as the transverse normal strain are taken into account. Material properties of the sandwich beam faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. Equations of motion are derived from Hamilton's principle. Analytical solutions for the bending, free vibration and buckling analyses are obtained for simply supported sandwich beams. Illustrative examples are given to show the effects of varying gradients, thickness stretching, boundary conditions, and thickness to length ratios on the bending, free vibration and buckling of functionally graded sandwich beams.

New Deformation Mechanism in the Forming of Cones by Shear Spinning (전단 스피닝에 의한 원추형상의 성형에 관한 변형 메커니즘)

  • Kim J. H.;Kim Chul
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.375-383
    • /
    • 2005
  • The shear spinning process, where the plastic deformation zone is localized in a very small portion of the workpiece, shows a promise for increasingly broader application to the production of axially symmetric parts. In this paper, the three components of the working force are calculated by a newly proposed deformation model in which the spinning process is understood as shearing deformation after uniaxial yielding by bending, and shear stress, $\tau_{rz}$, becomes k, yield limit in pure shear, in the deformation zone. The tangential force are first calculated and the feed force and the normal force are obtained by the assumption of uniform distribution of roller pressure on the contact surface. The optimum contact area is obtained by minimizing the bending energy required to get the assumed deformation of the blank. The calculated forces are compared with experimental results. A comparison shows that theoretical prediction is reasonably in good agreement with experimental results

NUMERICAL SIMULATION OF UNSTEADY VISCOUS FLOWS USING A GRID DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES (비정렬 혼합 격자계에서 격자 변형 기법을 이용한 비정상 점성 유동 수치 모사)

  • Lee, H.D.;Jung, M.S.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.252-268
    • /
    • 2009
  • In the present study, a grid deformation technique has been incorporated into the unsteady compressible and incompressible viscous flow solvers on unstructured hybrid meshes. An algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements, and a ball-vertex spring analogy was adopted for inviscid elements among several spring analogy methods due to its robustness. The present method was validated by comparing the results obtained from the grid deformation and the rigid motion of entire grids. Fish swimming motion of an NACA0012 airfoil and flapping wing motion of a generic fighter were simulated to demonstrate the robustness of the present grid deformation technique.

  • PDF

An Experimental Study on the Deformation Analysis and Automotive Body Repair in Automobile Frame Deformation according to Collision Types (충돌형태에 따른 자동차 프레임 변형시 변형분석 및 차체수리에 관한 실험적 연구)

  • Kwon, Yung-Shin;Kim, Tae-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.22-31
    • /
    • 2002
  • In present study, the deformation analysis and automotive body repair were analyzed with respect to collision types by case studies. As a result, lots of data for the automobile frame deformation caused by collision were collected and analyzed according to collision types. It was shown from the result that the frame deformation patterns were able to be roughly grouped by collision positions of vehicles. Repair plans of deformed frames could be carried on the measured data. It was shown that the deformed vehicle frames were sufficienty repaired to be normal in driving characteristics from the performance test of repaired vehicles.

NUMERICAL ANALYSIS OF UNSTEADY VISCOUS FLOWS USING A FAST GRID DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES (비정렬 혼합 격자계에서 신속 격자 변형 기법을 이용한 비정상 점성 유동 해석)

  • Lee, H.D.;Jung, M.S.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.33-48
    • /
    • 2009
  • In the present study, a fast grid deformation technique has been incorporated into the unsteady compressible and incompressible viscous flow solvers on unstructured hybrid meshes. An algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements, and a ball-vertex spring analogy was adopted for inviscid elements among several spring analogy methods due to its robustness. The present method was validated by comparing the results obtained from the grid deformation and the rigid motion of entire grids. Fish swimming motion of an NACA0012 airfoil and flapping wing motion of a generic fighter were also simulated to demonstrate the robustness of the present grid deformation technique.

Effect of Deformation Energy on the Indentation Induced Etch Hillock (변형 에너지가 나노압입 유기 Hillock 현상에 미치는 영향)

  • Kim H. I.;Youn S. W.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.225-228
    • /
    • 2005
  • The purpose of this study is to investigate effects of the plastic/elastic deformation energy on wet etching characterization on the surface of material by using the nanoindentation and HF wet etching technique. Indents were made on the surface of Pyrex 7740 glass by the hyperfine indentation process with a Berkovich diamond indenter, and they were etched in $50\;wt\%$ HF solution. After etching process, convex structure was obtained due to the deformation-induced hillock phenomena. In this study, effects of indentation process parameters (normal load, loading rate) on the morphologies of the indented surfaces after isotopic etching were investigated from an angle of deformation energies.

  • PDF