• Title/Summary/Keyword: Nonylphenol ethoxylates

Search Result 7, Processing Time 0.029 seconds

Biodegradation Kinetics of Nonylphenol Ethoxylates by Pseudomonas sp. (Pseudomonas sp.에 의한 Nonylphenol Ethoxylates의 Kinetics)

  • 김수정;이종근;이상준
    • Journal of Environmental Science International
    • /
    • v.2 no.4
    • /
    • pp.271-278
    • /
    • 1993
  • Optimal biodegradation kinetics models to the initial nonylphenol ethoxylates-30 concentration were investigated and had been fitted by the linear regression. Microorganisms capable of degrading nonylphenol ethoxylates-30 were isolated from sewage near Ulsan plant area by enrichment culture technique. Among them, the strain designated as EL-10K had the highest biodegradability and was identified as Pseudomonas from results of taxonomical studies. The optimal conditions for the biodegradation were 1.0 g/ι of nonylphenol ethoxylates-30 and 0.02 g/ι of ammonium nitrate at pH 7.0 and 3$0^{\circ}C$. The highest degradation rate of nonylphenol ethoxylates-30 was about 89% for 30 hours incubation on the optimal condition. Biodegradation data were fit by linear regression to equations for 3 kinetic models. The kinetics of biodegradation of nonylphenol ethoxylates was best described by first order model for 0.1 $\mu\textrm{g}$/ι nonylphenol ethoxylates-30 ; by Monod no growth model and Monod with growth model for 0.5 $\mu\textrm{g}$/mι and 1.0, 5.0 $\mu\textrm{g}$/mι, respectively.

  • PDF

Degradation and Removal of Nonylphenol Ethoxylates in Wastewater by a Sequencing Batch Reactor Process (연속회분식 반응조 공정에서 하수 중의 nonylphenol ethoxylates의 분해 및 제거)

  • Lee, Seock-Heon;Bum, Jin-Young;Park, Ki Young;Kim, Jong-Guk;Seo, Yong-Chan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.680-688
    • /
    • 2004
  • A sequencing batch reactor (SBR) was operated to investigate the degradation and removal of non-ionic surfactant, nonylphenol ethoxylates (NPEOs) in wastewater using lab scale experimental apparatus. About 5mg/L of NPEO was introduced and only < 0.1mg/L of NPEOs and nonylphenol(NP) in total was detected in treated effluent. In the effluent, long chain ethoxylates (NPEO12-15) were not detected, but short chain ethoxylates (NPEO1,2) were in relatively high concentration. NPEOs in the mixed liquor disappeared more rapidly in anaerobic condition than in aerobic condition.

Behavior Characteristics of Nonylphenol in the Downstream of River in Busan, Korea (부산 도심하천 하구의 Nonylphenol 거동 특성)

  • Kim, Sunyoung;Roh, Kyong-Joon;Kim, Dong-Myung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.1
    • /
    • pp.74-80
    • /
    • 2019
  • Nonylphenol is an endocrine-disrupting chemical that is the degradation product of the nonionic surfactants nonylphenol ethoxylates. To understand the contamination and behavioral characteristics of nonylphenol, we measured the nonylphenol concentrations in surface water in the lower reaches of the Suyeong River, Korea. The results were used to estimate the material balance. The target area was divided into three regions to estimate the material balance of nonylphenol. In region 1, in flux of the dissolved nonylphenol was 282.3 g/day and the nonylphenol influx in particulate suspended solids was 1,582.8 g/day. The dissolved nonylphenol outflow discharged toward region 2 was 192.5 g/day, while the adsorption to particulate suspended solids was 89.8 g/day. Within the particulate suspended solids, the outflow to region 2 was 1,250.0 g/day, while the estimated amount settling in the sediments was 422.7 g/day. The adsorption of dissolved nonylphenol to the particulate suspended solids in regions 1 and 2 was 31.8% and 54.9%, respectively. In region 3, the desorption rate was 8.8%.

Occurrence and Concentrations of Estrogenic Phenolic Compounds in Surface Waters of Rivers Flowing into Masan Bay, Korea

  • Choi Minkyu;Lee Su-Jeong;Koo Jun Ho;Moon Hyo-Bang;Kim Gui-Young
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.4
    • /
    • pp.220-227
    • /
    • 2005
  • The estrogenic phenolic compounds, nonylphenol (NP), octylphenol(OP), bisphenol A (BPA) and nonylphenol mono- and diethoxylate ($NP_{1-2}EO$) were analyzed in 24 surface water samples from six rivers flowing into Masan Bay. All of the phenolic compounds were detected in all six rivers in high concentrations. The most abundant compound was $NP_{1-2}EO$ (86.0%), followed by NP ($10.1 \%$), BPA ($3.6\%$) and OP ($0.3\%$). The levels of phenolic compounds were 1.42-22.70 ${\mu}g$/L for $NP_{1-2}EO$, 0.15-1.68 ${\mu}g$/L for NP, 0.024-0.610 ${\mu}g$/L for BPA and 0.003-0.067 ${\mu}g$/L for OP. Especially, high concentrations were recorded in the rivers that pass through industrial complexes. The concentrations of phenolic compounds observed in these river waters were 1-2 orders of magnitude lower than the reported acute toxicity levels (hundreds of micrograms per liter). However, they were only slightly lower than the chronic toxicity levels. Most of the water samples also exceeded the Canadian nonylphenolic compounds water quality guideline, 1 ${\mu}g$/L, for the protection of aquatic life and the maximum permissible concentrations (MPC), 0.33 ${\mu}g$/L for NP and 0.12 ${\mu}g$/L for $NP_{1-2}EO$.

Sources and Distributions of Organic Wastewater Compounds on the Mokpo Coast of Korea

  • Choi, Min-Kyu;Choi, Hee-Gu;Moon, Hyo-Bang;Yu, Jun;Kang, Sung-Kyung;Choi, Su-Kyung
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.4
    • /
    • pp.205-214
    • /
    • 2007
  • Surface water and sediment samples collected from the Mokpo coast of Korea were analyzed for molecular markers of organic municipal wastewaters, i.e., 11 fecal sterols including coprostanol (Cop) and nonylphenolic compounds (NPs), to characterize the main routes of these wastewaters to the coast and to assess contamination levels. Concentrations of Cop ranged from 94 to 7,568 ng/L in surface water and from 43 to 38,108 ng/g dry weight in sediments. Concentrations of NPs [nonylphenol (NP) and nonylphenol mono- and di-ethoxylates ($NP_{1-2}EOs$)] ranged from 123 to 4,729 ng/L in surface water and from 4 to 2,119 ng/ng dry weight in sediments. The levels of these compounds were much higher at stations near the rivers that pass through the urban center of Mokpo and the outfall of the wastewater treatment plant (WWTP). The spatial distribution of Cop levels was statistically similar to that of NPs (r=0.809 and 0.982 in surface water and sediments, respectively), indicating that these compounds may have similar discharge points, transport, mixing, and deposition in the study area. These results suggest that considerable amounts of organic wastewater compounds are discharged through rivers and WWTP effluent to the Mokpo coast.

Distribution of Fecal Sterols and Nonylphenolic Compounds in Sediments from Busan Suyeong Estuary, Impacted by Wastewater Treatment Plant Effluents (하수처리장 방류수역에서 분변계스테롤과 노닐페놀류의 분포 특성)

  • Baek, Seung-Hong;Yoon, Sera;Lee, In-Seok;Hwang, Dong-Woon;Choi, Minkyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.1006-1013
    • /
    • 2014
  • Wastewater organic compounds, that is, nonylphenolic compounds (NPs) and fecal sterols, were measured in surface sediments from Busan Suyeong Estuary, where two wastewater treatment plants (WWTPs) are located, to assess contamination from municipal effluents. The NPs analyzed were nonylphenol, and nonylphenol mono- and di-ethoxylates, all synthetic endocrine disruptors. The fecal sterols analyzed were coprostanol (COP), cholestanol, and epicoprostanol. Concentrations of NPs in the sediments ranged from 146 to 3,723 ng/g, and those of COP ranged from 366 to 13,018 ng/g. Their detection in all of the sediments analyzed indicates widespread pollution by municipal effluents. The highest concentrations of NPs and COP were detected at stations close to outfalls of WWTPs. Their levels in sediments are categorized in the higher range of those previously reported in Korean coastal areas. Moreover, in comparison with screening values of NPs in the Netherlands, Norway, and Canada, more than 50% of the sampling stations exceeded the guidelines. This indicates that the estuary may be adversely influenced by municipal effluents.

Determination of alkylphenol ethoxylate in water by high performance liquid chromatography/electrospray ionization/mass spectrometry (HPLC/ESI/MS를 이용한 물 중의 알킬페놀에톡실레이트 분석)

  • Lee, Jeongae;Park, Song-Ja;Chung, Bong Chul
    • Analytical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.263-270
    • /
    • 2004
  • A method is described for the analysis of short-chain alkylphenol ethoxylates (APEOs), 4-octylphenol-di-ethoxylate (OP2EO) and 4-nonylphenol-di-ethoxylate (NP2EO), in drinking water or wastewater using reversed phase high-performance liquid chromatography with electrospray ionization mass spectrometry. The solvent system was water and methanol containing $10{\mu}M$ trifluoroacetic acid as an ionization solvent. We acidified 1 L of water samples to less than pH 2 with concentrated $H_2SO_4$ and loaded onto Sep-Pak $C_{18}$, and eluted with acetone. The calibration of OP2EO and NP2EO was performed for the concentration range from 20 to 500 ng/L and the correlation coefficients were 0.999 and 0.990, respectively. The limits of detection were 20 ng/L (OP2EO) and 50 ng/L (NP2EO) at a signal-to-noise ratio of 3. Accuracy and precision of this analytical method were 85.8 ~ 122.1% and 8.2 ~ 18.8%, respectively. The proposed method allowed a sensitive and rapid detection of OP2EO and NP2EO and it could be applied for monitoring of APEOs from environmental samples.