• 제목/요약/키워드: Nonpremixed turbulent combustion

검색결과 45건 처리시간 0.025초

난류 확산화염의 계측 위치에 따른 화염자발광 특성에 대한 연구 (A Study on chemiluminescence characteristics of a turbulent flame for different measurement location)

  • 권민준;이창엽;김세원
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.219-222
    • /
    • 2014
  • The flame chemiluminescence is a good tracer of flame statement. In this study, the characteristics of flame chemiluminescence($OH^*$, $CH^*$, ${C_2}^*$) according different measuring locations using photomultiplier(PMT), spectrometer and CCD camera. Measurements are made for $OH^*$, $CH^*$, ${C_2}^*$ radicals in gas & light oil diffusion flames. At turbulent nonpremixed combustion mode, the equivalence ratio is varied. The experimental results showed that measuring location affects the result of flame chemiluminescence.

  • PDF

고압 분위기하에 분사된 메탄가스 제트의 자연발화 및 화염전파 특성 해석 (Numerical Analysis for Autoignition Characteristics of Turbulent Gaseous Jets in a High Pressure Environment)

  • Kim, Seong-Ku;Yu, Yong-Wook;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.24-32
    • /
    • 2002
  • The autoignition and subsequent flame propagation of initially nonpremixed turbulent system have been numerically analyzed. The unsteady flamelet modeling based on the RIF (Representative Interactive Flamelet) concept has been employed to account for the influences of turbulence on these essentially transient combustion processes. In this RIF approach, the partially premixed burning, diffusive combustion and formation of pollutants(NOx, soot) can be consistently modeled by utilizing the comprehensive chemical mechanism. To treat the spatially distributed inhomogeneity of scalar dissipation rate, the multiple RIFs are employed in the framework of EPFM(Eulerian Particle Flamelet Model) approach. Computations are made for the various initial conditions of pressure, temperature, and fuel composition. The present turbulent combustion model reasonably well predicts the essential features of autoignition process in the transient gaseous fuel jets injected into high pressure and temperature environment.

  • PDF

Numerical Modeling for the $H_2/CO$ Bluff-Body Stabilized Flames

  • Kim, Seong-Ku;Kim, Yong-Mo;Ahn, Kook-Young;Oh, Koon-Sup
    • Journal of Mechanical Science and Technology
    • /
    • 제14권8호
    • /
    • pp.879-890
    • /
    • 2000
  • This study investigates the nonpremixed $H_2/CO$-air turbulent flames numerically. The turbulent combustion process is represented by a reaction progress variable model coupled with the presumed joint probability function. In the present study, the turbulent combustion model is applied to analyze the nonadiabatic flames by introducing additional variable in the transport equation of enthalpy and the radiative heat loss is calculated using a local, geometry independent model. Calculations are compared with experimental data in terms of temperature, and mass fraction of major species, radical, and NO. Numerical results indicate that the lower and higher fuel-jet velocity flames have the distinctly different flame structures and NO formation characteristics in the proximity of the outer core vortex zone. The present model correctly predicts the essential features of flame structure and the characteristics of NO formation in the bluff-body stabilized flames. The effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF

고압 분위기하에 분사된 메탄가스 제트의 자연점화 및 화염전파 특성 해석 (Numerical analysis for Autoignition Characteristics of Turbulent Gaseous Jets in a High Pressure Environment)

  • 김성구;유용욱;김용모
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.81-89
    • /
    • 2002
  • The autoignition and subsequent flame propagation of initially nonpremixed turbulent system have been numerically analyzed. The unsteady flamelet modeling based on the RIF (representative interactive flamelet) concept has been employed to account for the influences of turbulence on these essentially transient combustion processes. In this RIF approach, the partially premixed burning, diffusive combustion and formation of pollutants(NOx, soot) can be consistently modeled by utilizing the comprehensive chemical mechanism. To treat the spatially distributed inhomogeneity of scalar dissipation rate, the multiple RIFs are employed in the framework of EPFM(Eulerian particle flamelet model) approach. Computations are made for the various initial conditions of pressure, temperature, and fuel composition. The present turbulent combustion model reasonably well predicts the essential features of autoignition process in the transient gaseous fuel jets injected into high pressure and temperature environment.

화염편 모델을 이용한 하이브리드 로켓의 연소과정 해석 (Flamelet Modeling for Combustion Processes of Hybrid Rocket Engine)

  • 임재범;김용모;윤명원
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.245-248
    • /
    • 2006
  • Hybrid propulsion systems provide many advantages in terms of stable operation and safety. However, classical hybrid rocket motors have lower fuel regression rate and combustion efficiency compared to solid propellant rocket motor. Accordingly, the recent research efforts are focused on the improvement of engine efficiency and regression rate in the hybrid rocket engine. The present study has numerically investigated the combustion processes in the hybrid rocket engine. The turbulent combustion is represented by the flamelet model and Low Reynolds number $k-{\varepsilon}$ turbulent model is employed to reduce the uncertainties for convective heat transfer near solid fuel surface having strong blowing effect. Based on numerical results, the detailed discussions have been made for the effects of oxygen injection methods and oxygen injection flow rate on flame structure and regression rate in the vortex hybrid rocket engines

  • PDF

Damkohler 수가 비예혼합 CO/$H_2$/$N_2$ 난류 화염장에서의 초과평형농도 및 화염구조에 미치는 영향 (Effect of Damkohler Number on Superequilibrium Concentration and Flame Structure in Turbulent Nonpremixed Jet Flames)

  • 김군홍;김용모;윤명원
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.51-58
    • /
    • 2002
  • The RPV(Reaction Progress Variable) combustion model has been applied to numerically investigate the effects of Damkohler number on the superequilibrium concentration and flame structure in the nonpremixed turbulent flames. Computations are performed for the two turbulent jet flames of CO/H$_2$/N$_2$(40/30/30 volume percent) having the same jet Reynolds number of 16,700 but different nozzle diameters(4.58mm and 7.72mm). The detailed discussions have been made for the interaction between fluid dynamics and chemistry in the flame field.

Zonal Hybrid RANS/LES를 이용한 크랙된 케로신 스크램제트 연소기의 비예혼합 난류 연소 연구 (Numerical Investigation of Nonpremixed Turbulent Flame of Cracked Kerosene in a Model Scramjet Combustor using Zonal Hybrid RANS/LES Method)

  • 신준수;성홍계
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.304-309
    • /
    • 2017
  • 본 연구에서는 zonal hybrid RANS/LES 기법을 사용하여 모델 스크램제트 연소기 내에서의 비예혼합 연소 현상에 대한 연구를 수행하였다. 수치 계산을 위한 도메인은 RANS와 LES 영역으로 나누어져 있으며, 이 두 개 영역의 계면은 synthetic eddy method로 처리되었다. 본 연구에서는 독일 항공우주센터에서 실험한 모델 스크램제트 연소기가 사용되었다. 수소 연료를 사용한 실험 결과와 수치해석적 검증을 수행하였다. 크랙된 케로신 연료는 에틸렌과 메탄으로 구성되었으며, 크랙된 케로신 surrogate의 난류연소는 화염편 모델을 사용하여 모사되었다.

  • PDF

실시간 연소제어를 위한 화염 내 라디칼 계측기법 연구 (An Experimental Study on the Measurement of Radicals in Flame for Real Time Combustion Control)

  • 신명철;김세원;류태우;권승진
    • 한국연소학회지
    • /
    • 제11권3호
    • /
    • pp.18-25
    • /
    • 2006
  • The present studying is aimed to establish the relationship between flame chemiluminescence$(OH^*,\;CH^*,\;C_2^*)$ intensities and combustion conditions such as $NO_x$ emission characteristics. Measurements are made for $OH^*,\;CH^*,\;C_2^*$ radicals in gas & light oil diffusion flames. At turbulent nonpremixed combustion mode, the equivalence ratio is varied. The optical emissions were measured by photomultiplier(PMT) using optical band pass filter and spectrometer system. The experimental results showed that the ratio of radicals and $NO_x$ emission characteristics have exponential correlations and equivalence ratio characteristics have linear correlations at this experimental conditions.

  • PDF

비예혼합 수소-공기 난류제트화염내의 NOx 생성특성 예측 (Prediction of NOx Formation Characteristics in Turbulent Nonpremixed Hydrogen-Air Jet Flames)

  • 김성구;김용모;안국영;오군섭
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.165-170
    • /
    • 1998
  • Turbulent nonpremixed $H_2$-air jet flames are numerically investigated using the joint PDF model. The reaction progress variable is derived by assuming the radicals 0, H, and OH to be in partial equilibrium and additional species $HO_2$ and $H_2O_2$ in steady state. The model is extended to npnadiabatic flame by introducing additional variable for the transport of enthalpy and radiative source term is calculated using a local, geometry independent model. In terms of flame structure and NO formation, the predicted results are favorably agreed with experimental data. The effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF

Eulerian Particle Flamelet Modeling for Combustion Processes of Bluff-Body Stabilized Methanol-Air Turbulent Nonpremixed Flames

  • Kim, Seong-Ku;Kang, Sung-Mo;Kim, Yong-Mo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1459-1474
    • /
    • 2006
  • The present study is focused on the development of the RIF (Representative Interactive Flamelet) model which can overcome the shortcomings of conventional approach based on the steady flamelet library. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF model can effectively account for the detailed mechanisms of $NO_x$ formation including thermal NO path, prompt and nitrous $NO_x$ formation, and reburning process by hydrocarbon radical without any ad-hoc procedure. The flamelet time of RIFs within a stationary turbulent flame may be thought to be Lagrangian flight time. In context with the RIF approach, this study adopts the Eulerian Particle Flamelet Model (EPFM) with mutiple flamelets which can realistically account for the spatial inhomogeneity of scalar dissipation rate. In order to systematically evaluate the capability of Eulerian particle flamelet model to predict the precise flame structure and NO formation in the multi-dimensional elliptic flames, two methanol bluffbody flames with two different injection velocities are chosen as the validation cases. Numerical results suggest that the present EPFM model has the predicative capability to realistically capture the essential features of flame structure and $NO_x$ formation in the bluff-body stabilized flames.