• Title/Summary/Keyword: Nonpoint pollution

Search Result 288, Processing Time 0.022 seconds

Manufacturing of artificial lightweight aggregate from water treatment sludge and application to Non-point treatment filteration (정수슬러지를 재활용한 인공경량골재의 제조 및 비점오염원 여재의 적용)

  • Jung, Sung-Un;Lee, Seoung-Ho;Namgung, Hyun-Min
    • Industry Promotion Research
    • /
    • v.6 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • The purpose of this study is to manufacture lightweight aggregates for recycling water treatment sludge, to identify the physical properties of the aggregates, and present a method of utilizing the manufactured lightweight aggregates. The chemical composition and thermal properties were examined via a raw materials analysis. The aggregate examined here was fired by the rapid sintering method and the single-particle density and water absorption rate were measured. Water treatment sludge has high ignition loss and high fire resistance. When 30wt% of purified sludge was added, the single-particle density of the aggregates was in the range of 0.8~1.2g/cm3 at a temperature of 1,150~1,200℃. At temperatures of 1200℃ or higher, ultra-light aggregates having a single-particle density of 0.8 or less could be produced. When applied to concrete by replacing the general aggregate in the concrete, a specimen having strength values of 200 to 450 kgf/cm2 on 28 days was obtained, and when applied as a filter material, the performance was equal to or higher than that of ordinary sand.

Analysis of pollutant build-up model applied to various urban landuse

  • Choi, Jiyeon;Na, Eunhye;Ryu, Jichul;Kim, Jinsun;Kim, Hongtae;Shin, Dongsuk
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.13-17
    • /
    • 2019
  • This study was conducted to analyse the application of pollutant build-up model on various urban landuses and to characterize pollutant build-up on urban areas as a source of stormwater runoff pollution. The monitored data from impervious surfaces in urban areas such as commercial (8 sites), industrial (10 sites), road (8 sites), residential (10 sites), recreational (5 sites) from 2008 to 2016 were used for the analysis of pollutant build-up model. Based on the results, the average runoff coefficients vary from 0.35 to 0.61. In all landuses except recreational landuse, the runoff coefficient is 0.5 or more, which is the highest in the commercial area. Commercial landuse where pollutants occur at the highest EMC in all landuse, and it is considered that NPS management is necessary compared with other landuses. The maximum build-up load for organic matter (BOD) was highest in the commercial area ($4.59g/m^2$), and for particular matter (TSS) in the road area ($5.90g/m^2$) while for nutrient (TN and TP) in the residential area ($0.40g/m^2$, $0.14g/m^2$). The rate constants ranged from 0.1 to 1.3 1/day depending on landuse and pollutant parameters, which means that pollutant accumulation occurs between 1 and 10 days during dry day. It is clear that these build-up curves can generally be classified based on landuse. Antecedent dry day (ADD) is a suitable and reasonable variable for developing pollutant build-up functions. The pollutant build-up curves for different landuse shows that these build-up curves can be generally categorized based on landuse.

Characteristics of Suspended Solids Export from Paddy Fields (논에서의 SS 유출 특성)

  • Lee, Kyoungsook;Jung, Jaewoon;Choi, Dongho;Yoon, Kwangsik;Choi, Woojung;Choi, Soomyung;Lim, Sangsun;Park, Hana;Lim, Byungjin;Choi, Gangwon
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.868-876
    • /
    • 2011
  • A five-year field monitoring was conducted to monitor characteristics of suspended solid (SS) export from paddy fields. The observed EMCs of SS ranged 1.2~517 mg/L (avg. 52.1 mg/L) during storm period. The concentration of SS during non-storm period were 1.1~349.5 mg/L (avg. 36.1 mg/L). Monthly load of SS was high during summer when rainfall amount was high. The load was higher than that of May when tillage effect is expected. There was no significant relationship between SS EMCs and rainfall or drainage amount. However, effects of rainfall and drainage were found to be significant for event load of SS. But, there was no apparent relationship between rainfall amount of cropping period and load of SS for that period. The observed SS load was 164.8~456.0 kg/ha (avg. 301.2 kg/ha) and mostly occurred during storm period. This study results also suggested that SS load estimation by USLE equation for paddy field could be overestimated, if not carefully handled. Monitoring studies for various climate, soil, and agricultural management are required to get better scope of SS export from paddy fields.

A Study on the Calculation of Stormwater Utility Fee Using GIS based Impervious Surface Ratio Estimation Methodology (GIS 기반 불투수율 산정방법론을 활용한 강우유출수 부담금 모의산정 방안 연구)

  • Yoo, Jae Hyun;Kim, Kye Hyun;Choi, Ji Yong;Lee, Chol Young
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.3
    • /
    • pp.157-167
    • /
    • 2021
  • Korea needs to develop a rational system to separate stormwater utility fee from current sewerage fee. In this study, the scenario for calculating stormwater utility fee of Bupyeong-gu was suggested and the results were considered. For this purpose, the application of stormwater utility fee overseas and current domestic system were analyzed. A three step calculating scenario considering suitable domestic situation and impervious surface area was suggested. Water, sewerage usage, and hydrant data were collected. The total amount of water and sewerage fees for land use were calculated. The sewerage fee of Bupyeong-gu for the year 2014 was 21,685,446,578 won. Assuming that 40% of this amount was the cost associated to stormwater, the result showed that the fees for residential area in third step decreased by 0.77% compared to that of the first step. For commercial area, the stormwater utility fee decreased by 36.87%. For industrial area, although the consumption of water was similar to that of commercial area, the stormwater utility fee increased by 8.35%. For green area, the fee increased by 37.46%. This study demonstrated that the calculation of actual stormwater utility fee using impervious surface map and impervious Surface Ratio Estimation Methodology developed in previous studies is feasible.

Evaluation of Surrogate Monitoring Parameters for SS and T-P Using Multiple Linear Regression and Random Forest (다중 선형 회귀 분석과 랜덤 포레스트를 이용한 SS, T-P 대리모니터링 기법 평가)

  • Jeung, Minhyuk;Beom, Jina;Choi, Dongho;Kim, Young-joo;Her, Younggu;Yoon, Kwangsik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.2
    • /
    • pp.51-60
    • /
    • 2021
  • Effective nonpoint source (NPS) pollution management requires frequent water quality monitoring, which is, however, often costly to be implemented in practice. Statistical techniques and machine learning methods allow us to identify and focus on fundamental environmental variables that have close relationships with NPS pollutants of interest. This study developed surrogate models to predict the concentrations of suspended sediment (SS) and total phosphorus (T-P) from turbidity and runoff discharge rates using multiple linear regression (MLR) and random forest (RF) methods. The RF models provided acceptable performance in predicting SS and T-P, especially when runoff discharge rates were high. The RF models outperformed the MLR models in all the cases. Such finding highlights the potential of RF techniques and models as a tool to identify fundamental environmental variables that are measured in relatively inexpensive ways or freely available but still able to provide information required to quantify the concentrations of NP S pollutants. The analysis of relative importance rates showed that the temporal variations of SS and T-P concentrations could be more effectively explained by that of turbidity than runoff discharge rate. This study demonstrated that the advanced statistical techniques such as machine learning could help to improve the efficiency of NPS pollutants monitoring.

Removal Efficiency of TSS Loadings from Expressway by Road Sweeping and Sand Filter Facility Using ROADMOD (ROADMOD를 이용한 도로청소 및 모래여과시설에 의한 고속도로에서의 강우시 TSS 저감효과 분석)

  • Heeman Kang;Ji-Hong Jeon
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.38-45
    • /
    • 2023
  • In this study, the removal efficiency of road sweeping and sand filter facility for removing total suspended solid (TSS) as nonpoint source pollution from expressway was evaluated for the last 10 years (2012~2021) using ROADMOD. ROADMOD is a screening level model and was calibrated for runoff rate and TSS loading both at the inlet, which is the loading from the drainage area, and the outlet, from the sand filter facility. The drainage area is 715 m2 and the dimensions of sand filter facility are 1.5 m (wide) × 3.8 m (length) × 1.5 m (depth). The monitoring period for model calibration was the rainfall event during Aug. 31~Sep. 1, 2021 and the amount of rainfall was 74.5 mm. As a result of calibration, the determination coefficients (R2) of the flow rate were 0.66 and 0.86, for the inlet and outlet, respectively, and those of TSS loading were 0.50 and 0.84, for the inlet and outlet, respectively. Considering that ROADMOD is a screening level model, the calibration results were reasonable to evaluate the best management practices (BMPs) on the expressway. Using ROADMOD simulation results for 2012~2021, the average yearly runoff rate from the expressway was 82% and removal efficiency was 9% for road sweeping, 35% for sand filter facility, and 39% for both road sweeping and sand filter facility.

A Review of Constructed Wetlands for Water Quality Management in India

  • Farheen, Shaista;Geronimo, Franz Kevin;Guerra, Heidi;Reyes, Nash Jett;Choi, Hyseon;Jeon, Minsu;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.129-129
    • /
    • 2021
  • Constructed wetlands (CW) are artificially developed wetlands that are used to control water pollution. In central India, the field application of CW started on the late 1990s but are mostly focused on wastewater treatment. In this paper, different existing and experimental studies on constructed wetlands were reviewed to be able to determine the current status of wetlands in India to identify the type of CW that is more suitable in managing a specific target pollutant and type of wastewater. Wetlands were categorized into three types: vertical flow, horizontal flow, and hybrid while the wastewater were classified as domestic and industrial. Based on the review, 80% of constructed wetlands are used for treating domestic wastewater while 20% are treating industrial wastewater. Inflow analysis showed that industrial wastewater in hybrid constructed wetland produced the highest average concentration for parameters like COD (2851 mg/L) and BOD (5715 mg/L) while the lowest concentration was TN (13.97 mg/L) found in municipal wastewater. In terms of removing nonpoint source pollutants, it was revealed that vertical flow constructed wetlands (VFCW) are more effective at removing TSS and BOD as compared to horizontal flow constructed wetlands (HFCW) and hybrid constructed wetlands (HCW). HCW were found to be capable of efficiently removing COD and TN. Meanwhile, HFCW showed the highest TP removal among all the types of wetlands. In addition, VFCW were more effective for domestic wastewater while HCW are more effective for treating industrial wastewater. Lastly, there is currently a need to conduct further research on constructed wetlands for industrial wastewater as well as stormwater treatment to be able to gather more data and improve wetland design, performance, and maintenance.

  • PDF

A Study on Changes in Impervious Surface Area Rate at Administrative Units for Gyeongsangnam-do (경상남도 행정구역별 불투수면적률 현황 및 변화 연구)

  • Kim, Hyeonjoon;Choi Yoonhee;Kim, Hakkwan;Jang, Min-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.29 no.4
    • /
    • pp.117-125
    • /
    • 2023
  • This study aimed to analyze the recent status and changes in impervious surface areas and their ratios across regions in Gyeongsangnam-do, providing fundamental data for regional development and impervious surface management. Based on the 'Guidelines for Calculating Water Cycle Management Indicators for Nonpoint Pollution Source Control(Ministry of Environment)', we processed the land characteristics survey map(shapefile) from 2018 and 2022 to analyze impervious surface area and their rates by administrative boundaries. The impervious surface area in Gyeongsangnam-do increased from 75,652 ha in 2018 to 81,055 ha in 2022, with the rate rising by 0.51% from 7.18% to 7.69%. The average of impervious surface area across 545 eupmyeon units expanded by approximately 9 ha, from 139.8 ha in 2018 to 148.8 ha in 2022, with the rate increasing by 0.71%. Concurrently, the whole population declined by 2.8% while the number of households surged by 6.4%, correlating with the growth in impervious areas. Despite population decreases, factors such as population migration, increased household fragmentation, new residential developments, and industrial facility expansions have consistently contributed to the rise in impervious surface area. Notably, even in areas with high impervious surface area rate, significant disparities existed between urbanized areas and predominantly rural regions. Furthermore, about 333 units(61% of the whole eupmyeons), showed negligible changes in their impervious surface area rate, with an increase of less than 0.5%.

Evaluation of Nonpoint Pollutant Management Effect by Application of Organic Soil Ameliorant Based on Renewable Resources in Urban Watershed (도시유역에서 재생자원기반 유기성 토량개량제 적용에 따른 비점오염물질 관리 효과 평가)

  • Yoonkyung Park;Chang Hyuk Ahn
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.3
    • /
    • pp.131-139
    • /
    • 2024
  • This study investigated the chemical properties of Organic Soil Amendments (OSAs) made from organic waste. It also assessed the effectiveness of using these OSAs in the soil layer of Green Infrastructure (GI) to reduce stormwater runoff and non-point source pollutants. The goal was to improve the national environmental value through resource recycling and contribute to the circular economy transformation and carbon neutrality of urban GI. The OSAs used in this study consisted of spent coffee grounds and food waste compost. They were found to be nutrient-rich and stable as artificial soils, indicating their potential use in the soil layer of GI facilities. Applying OSAs to bio-retention cells and permeable pavement resulted in a reduction of approximately 11-17% in stormwater runoff and a decrease of about 16-18% in Total Phosphorus (TP) discharge in the target area. Increasing the proportion of food waste compost in the OSAs had a positive impact on reducing stormwater runoff and pollutant emissions. This study highlights the importance of utilizing recycled resources and can serve as a foundation for future research, such as establishing parameters for assessing the effectiveness of GI facilities through experiments. To enable more accurate analysis, it is recommended to conduct studies that consider both the chemical and biological aspects of substance transfer in OSAs.

Improvement Measures of Pollutants Unit-Loads Estimation for Paddy Fields (논으로부터 배출되는 영양물질 오염부하량 원단위 산정 방법 개선 방안 검토)

  • Jung, Jae-Woon;Yoon, Kwang-Sik;Choi, Woo-Jung;Choi, Woo-Young;Joo, Seuk-Hun;Lim, Sang-Sun;Kwak, Jin-Hyeob;Lee, Soo-Hyung;Kim, Dong-Ho;Chang, Nam-Ik
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.291-296
    • /
    • 2008
  • Pollutant unit load developed by Ministry of Environment (MOE) in 1995 has been a tool commonly used for water quality management and environmental policy decision. In spite of the convenience of the method in application, the shortcoming of the method has been criticized especially for nonpoint source pollution from paddy field. In this paper the estimation procedures of pollutant unit load from paddy field in the major river basins (Han, Nakdong, Geum, and Youngsan river) were investigated, and some suggestions of improvement measures of the unit-load estimation were made. The investigation showed that the distributions of rainfall, run-off, and run-off ratio, which are the most important factors affecting discharge amount of pollutants, were not similar among river basins. Such differences seemed to result in a greater unit loads estimation at Han river and at Nakdong river watersheds compared to the others. Therefore, it is not likely to be rationale to compare unit load among the watersheds without consideration of such differences. We conclude that estimation of unit-load through an intensive monitoring of pollutant discharge is crucial for better estimation of unit-load. When such an intensive monitoring is not easy due to labor and expense restriction, we suggest that unit-load should be estimated based on the storm-events which is a representative rainfall-runoff event of the area.