• 제목/요약/키워드: Nonpoint pollutant

검색결과 219건 처리시간 0.024초

도로청소 수거퇴적물의 특성과 비점오염물질 저감효과 (Characteristics of Collected Sediments from Road Sweeping and Reduction in the Nonpoint Source Pollutants Loading)

  • 정권;강희만;고석오
    • 한국도로학회논문집
    • /
    • 제13권2호
    • /
    • pp.187-193
    • /
    • 2011
  • 도로에서의 강우유출수 내 포함된 오염물은 주요한 비점오염원으로 간주되고 있으며 비점오염물질 저감을 위하여 많은 대책이 적용되고 있다. 도로청소에 의한 방법 또한 오염물의 강우유출에 의한 배출양을 감소시킬 수 있는 대책 중의 하나로 인식되는 추세에 있다. 본 연구에서는 도로청소 시 수거된 토사입자들의 특성을 파악하고 퇴적토사에 함유된 오염물질의 농도를 분석하였다. 분석결과를 바탕으로 하여 도로 구간별로 도로청소에 의하여 저감할 수 있는 오염물의 양을 평가하였다. 도로청소를 통하여 수거된 퇴적토사는 모래질로 분석되었으며 세립토 비중은 낮은 결과를 보였다. 퇴적토사 내 오염물의 양은 토양환경기준을 초과하지 않았으나 청소작업시 물을 살수함으로써 토사에 포함된 오염물이 세척되어 침출수로 미리 배출되는 것에 기인한다고 판단된다. 두 도로구역에 대하여 오염물 농도, 발생 퇴적토사량, 오염물 원단위를 적용하여 저감할 수 있는 오염물 양을 평가한 결과, ${\bigcirc}{\bigcirc}$지역에 대하여 TSS 31.4% 및 ${\triangle}{\triangle}$지역에서는 TSS 7.7%의 TSS 저감량이 도출되었다. 중금속과 같은 타 오염물의 경우 훨씬 낮은 저감량이 평가되었으나 이는 물의 살수로 인하여 퇴적토사 내 오염물이 침출수로 배출된 것에 기인한다고 판단된다. 보다 정확하게 도로청소에 의하여 저감할 수 있는 오염물의 양을 산정하기 위하여 보다 자세하고 체계적인 연구가 필요하다고 판단된다.

Investigating the Impact of Best Management Practices on Nonpoint Source Pollution from Agricultural Lands

  • 최예환
    • 한국농공학회지
    • /
    • 제32권E호
    • /
    • pp.1-19
    • /
    • 1990
  • Abstract Over the last several decades, crop production in the United States increased largely due to the extensive use of animal waste and fertilizers as plant nutrient supplements, and pesticides for crops pests and weed control. Without the application of animal waste best management, the use of animal waste can result in nonpoint source pollution from agricultural land area. In order to increase nutrient levels and decrease contamination from agricultural lands, nonpoint source pollution is responsible for water quality degradation. Nonpoint source pollutants such as animal waste, ferilizers, and pesticides are transported primarily through runoff from agricultural areas. Nutrients, primarily nitrogen and phosphorus, can be a major water quality problem because they cause eutrophic algae growth. In 1985, it was presented that Watershed/Water Quality Monitoring for Evaluation BMP Effectiveness was implemented for Nomini Creek Watershed, located in Westmoreland County, Virginia. The watershed is predominantly agricultural and has an aerial extent of 1505 ha of land, with 43% under cropland, 54% under woodland, and 3% as homestead and roads. Rainfall data was collected at the watershed from raingages located at sites PNI through PN 7. Streams at stations QN I and QN2 were being measured with V-notch weirs. Water levels at the stream was measured using an FW-l Belfort (Friez FWl). The water quality monitoring system was designed to provide comprehensive assessment of the quality of storm runoff and baseflow as influenced by changes in landuse, agronomic, and cultural practices ill the watershed. As this study was concerned with the Nomini Creek Watershed, the separation of storm runoff and baseflow measured at QNI and QN2 was given by the master depletion curve method, and the loadings of baseflow and storm runoff for TN (Total Nitrogen) and TP (Total Phosphorus) were analyzed from 1987 through 1989. The results were studied for the best management practices to reduce contamination and loss of nutrients, (e.g., total nitrogen and total phosphorus) by nonpoint source pollution from agricultural lands.

  • PDF

Characteristics of Pollutant Loading in Namdae-cheon Watershed

  • Choi, Jin-Kyu;Son, Jae-Gwon
    • 한국농공학회지
    • /
    • 제45권7호
    • /
    • pp.49-56
    • /
    • 2003
  • Nonpoint source pollutant loading from watershed may cause a problem to the water quality of the reservoir and stream. The characteristics of stream flow and water quality were monitored to investigate the runoff loading of the Namdae-cheon watershed from May in 1999 to October in 2003. Stage-discharge rating curve at the stream gauging site was established, and annual stream runoff of the study watershed was estimated as 499.4∼1,330.8mm during four years. The concentrations of total-nitrogen and total-phosphorus of stream water quality ranged from 0.76 to 6.95mg/L and from 0.0010 to 0.2276 mg/L, respectively, where T-N was generally higher than the water quality standard 1.0 mg/L for agricultural water use. The loads by unit generation of pollutant mass with respect to population, livestock, land use in this watershed were calculated. The runoff pollutant loadings by concentrations of total-N and total-P were estimated during study period, where the annual runoff loading of total-P was much less than the load by pollutant mass unit generation. The relations between stream discharge and water quality were analysed, and there was a high correlation for total-N but low for total-P. These results will be used to develop the monitoring techniques and water quality management system of agricultural watershed.

Grid Based Nonpoint Source Pollution Load Modelling

  • Niaraki, Abolghasem Sadeghi;Park, Jae-Min;Kim, Kye-Hyun;Lee, Chul-Yong
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2007년도 GIS 공동춘계학술대회 논문집
    • /
    • pp.246-251
    • /
    • 2007
  • The purpose of this study is to develop a grid based model for calculating the critical nonpoint source (NPS) pollution load (BOD, TN, TP) in Nak-dong area in South Korea. In the last two decades, NPS pollution has become a topic for research that resulted in the development of numerous modeling techniques. Watershed researchers need to be able to emphasis on the characterization of water quality, including NPS pollution loads estimates. Geographic Information System (GIS) has been designed for the assessment of NPS pollution in a watershed. It uses different data such as DEM, precipitation, stream network, discharge, and land use data sets and utilizes a grid representation of a watershed for the approximation of average annual pollution loads and concentrations. The difficulty in traditional NPS modeling is the problem of identifying sources and quantifying the loads. This research is intended to investigate the correlation of NPS pollution concentrations with land uses in a watershed by calculating Expected Mean Concentrations (EMC). This work was accomplished using a grid based modelling technique that encompasses three stages. The first step includes estimating runoff grid by means of the precipitation grid and runoff coefficient. The second step is deriving the gird based model for calculating NPS pollution loads. The last step is validating the gird based model with traditional pollution loads calculation by applying statistical t-test method. The results on real data, illustrate the merits of the grid based modelling approach. Therefore, this model investigates a method of estimating and simulating point loads along with the spatially distributed NPS pollution loads. The pollutant concentration from local runoff is supposed to be directly related to land use in the region and is not considered to vary from event to event or within areas of similar land uses. By consideration of this point, it is anticipated that a single mean estimated pollutant concentration is assigned to all land uses rather than taking into account unique concentrations for different soil types, crops, and so on.

  • PDF

동적 EMC를 이용한 고속도로 초기우수 처리 기준 산정 (Determination of First Flush Criteria in Highway Stormwater Runoff using Dynamic EMCs)

  • 김이형;이은주;고석오;김성길;이병식;이주광;강희만
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.294-299
    • /
    • 2006
  • The Ministry of Environment in Korea has introduced Total Pollution Load Management System (TPLMS) in major 4 large rivers to protect the water quality from possible pollutants. In order to successfully achieve the TPLMS, the nonpoint source should be controled by applying the best management practices in highly polluted areas. Of the various nonpoint sources, the highways are stormwater intensive landuses because of its high imperviousness and high pollutant mass emissions. The EMC (Event Mean Concentration) is an important parameter to correctly determine the pollutant mass loadings from nonpoint sources. However, it has wide ranges because of various reasons such as first flush phenomenon, rainfall and watershed characteristics. Even though the EMC is closely related to the first flush phenomenon, the relationship have not proven until present. Therefore, in this paper, the dynamic EMC method will be introduced to clearly make the relationship between EMC and first flush phenomenon. Also by applying the dynamic EMC method to monitored data, we found that the highly concentrated stormwater runoff was washed off within 20~50 minutes storm duration. The first flush criteria for economical treatment was also determined to 5~10 mm (mean=7.4 mm) as a cumulative rainfall.

STEPL WEB 모형을 이용한 농촌지역 비점오염원저감 대책 모의 (Simulation of the Best Management Practice Impacts on Nonpoint Source Pollutant Reduction in Agricultural Area using STEPL WEB Model)

  • 박윤식;금동혁;정영훈;조재필;임경재;김기성
    • 한국농공학회논문집
    • /
    • 제56권5호
    • /
    • pp.21-27
    • /
    • 2014
  • Sediment-laden water is problematic in aquatic ecosystem and for hydraulic structures in a watershed, and agriculture area in a watershed is one of source areas of nonpoint source (NPS), since soil surface typically exposures due to agricultural activities. Especially, severe sediment might flow into stream when agricultural area is located near stream like the Imha-dam watershed. Soil erosion is affected by precipitation, therefore there is a need to consider precipitation characteristics in soil erosion and best management practices (BMPs) simulation. The Web-based Spreadsheet Tool for the Estimation of Pollutant Load (STEPL WEB) allows estimating long-term sediment loads and the impact of best management practices to reduce sediment loads. STEPL WEB and predicted precipitation data by MIROC-ESM model was used to estimate sediment loads and its reduction by filter strip and conversion of agricultural area to forest in the future 30 years. The result indicates that approximately 70 % of agricultural area requires filter strip installation or that approximately 50 % of agricultural area needs to be converted to forest, for 41 % of sediment load reduction.

부하지속곡선을 이용한 비점오염원 우선관리 지역 선정 및 관리목표 설정 연구 (Identifying Priority Area for Nonpoint Source Pollution Management and Setting up Load Reduction Goals using the Load Duration Curve)

  • 장선숙;지현서;김학관
    • 한국농공학회논문집
    • /
    • 제60권5호
    • /
    • pp.17-27
    • /
    • 2018
  • The objective of this study is to identify the priority area where the nonpoint source pollution (NPS) management is required and to set up the load reduction goals for the identified priority area. In this study, the load duration curve (LDC) was first developed using the flow and water quality data observed at 286 monitoring stations. Based on the developed LDC, the priority area for the NPS pollution management was determined using a three-step method. The 24 watersheds were finally identified as the priority areas for the NPS pollution management. The water quality parameters of concern in the priority areas were the total phosphorus or chemical oxygen demand. The load reduction goals, which were calculated as the percent reduction from current loading levels needed to meet target water quality, ranged from 67.9% to 97.2% during high flows and from 40.3% to 69.5% during moist conditions, respectively. The results from this study will help to identify critical watersheds for NPS program planning purposes. In addition, the process used in this study can be effectively applied to identify the pollutant of concern as well as the load reduction target.

추령천 유역의 유황별 유달율 계산 (Pollutant Load Delivery Ratio for Flow Duration at the Chooryeong-cheon Watershed)

  • 김영주;윤광식;손재권;최진규;장남익
    • 한국농공학회논문집
    • /
    • 제52권4호
    • /
    • pp.19-26
    • /
    • 2010
  • To provide the basic information for the water quality management of the Sumjin River Basin, delivery ratios for flow duration were studied. Using the day-interval data set of discharge and water quality observed from the Chooryeong-cheon watershed, the flow-duration and discharge-load relation curves for the watershed were established, then the load-duration curve was constructed. Delivery ratios for flow duration were also developed. Delivery ratios showed wide variation according to flow conditions. In general, delivery ratio of high flow condition showed higher value reflecting nonpoint source pollution contribution from the forest dominating watershed. To resolve this problem, a regression model explaining the relation between flow rate and delivery ratio was suggested. The delivery ratios for different flow regime could be used for pollutant load estimation and TMDL (Total maximum daily load) development.

SWMM 모형을 이용한 유역의 오염부하량 산정 (Estimation for Watershed pollutant loading with SWMM)

  • 전지홍;윤춘경
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.689-694
    • /
    • 1999
  • This study estimated average yearly watershed pollutant loading by using SWMM(Storm Water Management Model) which is one of the nonpoint source quality models. Two sites were measured discharge and water quality at dry period and wet period. The rainfall data is used from 1989 to 1998 . During a decade, the average year watershed pollutant loading, which is SS, BOD5 , TN, TP, were 2.39E+06kg, 0.92E +05kg, 2.53E+05kg, 2.66E+04kg respectively. During dry period, SS, BOD5 TN, TP loadings were 1.89E+05kg, 1.7E+05kg, 1.04E+05kg, 1.11E+04kg, and during wet period 1.89E+05kg, 1.17E+05kg, 1.04E+05kg, 1.11E+04kg respectively so wet period loading are more than dry day loadings.

  • PDF

농업 소유역 격자단위 오염부하량 평가 (Assessment of Cell Based Pollutant Loadings in an Intensive Agricultural Watershed)

  • 강문성;조재필;전종안;박승우
    • 한국농공학회논문집
    • /
    • 제51권5호
    • /
    • pp.87-94
    • /
    • 2009
  • The objectives of this paper were to estimate cell based pollutant loadings for total maximum daily load (TMDL) programs and to evaluate the applicability of the agricultural nonpoint source (AGNPS) model for an intensive agricultural watershed in Korea. The model was calibrated and validated at a watershed of 384.8 ha of drainage area using the observed data from 1996 through 2000 in terms of runoff, suspended solid, total nitrogen, and total phosphorus on a hourly basis. Analysis of spatial variations of pollutant loadings for rainfall frequencies of various intensities and durations were conducted. In addition, the validated model was applied to estimated the TMDL removal efficiency for best management practices (BMPs) scenarios which were selected by taking into account the pollutant characteristics of the study watershed. The model can help to understand the problems and to find solutions through landuse changes and BMPs. Thus, the method used for this study was able to identify TMDL quantitatively as well as qualitatively for various sources pollution that are spatially dispersed. Also it provides an assessment of the impact of BMPs on the water bodies studied, allowing the TMDL programs to be complemented more effectively.