• Title/Summary/Keyword: Nonpoint pollutant

Search Result 219, Processing Time 0.026 seconds

Estimation and Investigation of the Pollutant Delivery Rate of Sapkyo Reservoir (삽교호의 오염물질 유달률 산정 조사 및 평가연구)

  • Lee, Youngshin;Shin, Sanghee;Lee, Taeho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.4
    • /
    • pp.29-36
    • /
    • 2014
  • The purpose of this study investigates the delivery characteristics according to the load of pollutants by calculating the delivery rate of targeted areas on pollutants in Sapkyo reservoir. The main rivers of Sapkyo reservoir are Namwoncheon, Dogocheon, Sapkyocheon, Muhancheon and Gokgyocheon. The delivery rate and their characteristics of five major rivers during rainfall season are investigated. As th result, biochemical oxygen demand (BOD), total nitrogen (T-N) and total phosphorous (T-P) of total delivery rate are calculated by 0.40, 0.34 and 0.08, respectively. The delivery rate of T-P compares to other water quality is investigated relatively low. Looked at the overall characteristics of the watershed, the delivery rate of T-N and T-P is little change in the rate of the year, too. The delivery rate of T-N is calculated from 0.2 to 0.3 in the dry season, and from 0.31 to 0.39 in a flood, respectively. The delivery rate of T-P is calculated to more than 0.3 in the dry season, and 0.11 in a flood. It is similar values which the average annual delivery rate of T-P is 0.08. Therefore, the measured delivery rate of Sapkyo reservoir can be applicable such as a delivery rate of similar features of the terrain and land use.

Characteristics of Wash-off Metal Pollutants from Highway Toll-Gate Area (고속도로 영업소지역의 강우유출수내 중금속 유출 특성)

  • Lee, Soyoung;Lee, Eunju;Kim, Chulmin;Son, Hyungun;Maniquiz, Marla C.;Son, Youngkyu;Kang, Heeman;Kim, Jeehyeong;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.945-950
    • /
    • 2007
  • The stormwater runoff from paved area are highly polluted because of particulate materials as well as metals from various vehicular activities. The Division of Road Maintenance in Ministry of Construction and Transportation was recently developed the Guidelines of Environment-kindly Road Maintenance. It is actually requiring the BMP construction to control the nonpoint source pollution as based on the TMDL program. This research is carried out in order to define the characteristics of stormwater runoff from the toll-gate of highways since 2006, which is actually one of the main pollutant sources of paved areas. This monitoring is the first phase work for establishing the treatment facilities in the toll-gates. The one of the main characteristics from toll-gate runoff is the first flush phenomenon containing lots of sediments and metal compounds at the beginning of a storm event. Usually it is used to determine the size of treatment facilities and to calculate the reduced pollutant mass in the facility. The research results shows that the mean EMC vaules for heavy metals are determined to $274.3{\mu}g/L$ for Cd, $1,273.4{\mu}g/L$ for Cr, $1,822.0{\mu}g/L$ for Cu, $6,504.9{\mu}g/L$ for Fe, $14,930.3{\mu}g/L$ for Pb, and $714.1{\mu}g/L$ for Zn. Also the metal mass loadings from the toll-gates are calculated using EMC, watershed area and storm duration.

Determination of EMCs for Rainfall Ranges from Transportation Landuses (교통관련 토지이용에서의 강우계급별 EMC 산정)

  • Lee, So-Young;Maniquiz, Marla C.;Choi, Ji-Yeon;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.11 no.2
    • /
    • pp.67-76
    • /
    • 2009
  • The contribution of pollutant loadings from non-point source (NPS) to the four major rivers in Korea exceeded 22~37 % of the total loadings in 2004 and is expected to reach 60 % in 2020. Most of NPS loadings are coming from urban areas, especially from paved areas. Because of high imperviousness rate, many types of NPS pollutant are accumulating on the surface during dry periods. The accumulated pollutants are wash-off during a storm and highly degrading the water quality of receiving water bodies. For this reason, the Korean Ministry of Environment (MOE) developed the Total Maximum Daily Load (TMDL) program to protect the water quality by managing the point source and NPS loadings. NPS has high uncertainties during a storm because of the characteristics of rainfall and watershed areas. The rainfall characteristics can affect on event mean concentrations (EMCs), mass loadings, flow rate, etc. Therefore, this research was performed to determine EMCs for rainfall ranges from transportation landuses such as road and parking lot. Two sites were monitored over 45 storm events during the 2006/06 through 2008/10 storm seasons. Mean TSS EMCs decrease as rainfall ranges increase and highest at less than 10mm rainfall. The results of this study can be used to determine the efficient scale of BMP facility considering specific rainfall range.

  • PDF

Assessment of AnnAGNPS Model in Prediction of a Rainfall-Runoff Relationship (AnnAGNPS 모형의 강우-유출해석력 평가)

  • Choi, Kyung-Sook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.2
    • /
    • pp.125-135
    • /
    • 2005
  • Generation and transport of nonpoint source pollution, especially sediment-associated pollutants, are profoundly influenced by hydrologic features of runoff. In order to identify pollutant export rates, hence, clear knowledge of rainfall-runoff relationship is a pre-requisition. In this study, performance of AnnAGNPS model was assessed based on the ability of the model to predict rainfall-runoff relationship. Three catchments, each under different nearly single land use, were simulated. From the results, it was found that the model was likely to produce better predictions for larger catchments than smaller catchments. Because of using the daily time scale, the model could not account for short durations less than 24 hours, especially high intensity events with multiple peak flow that significantly contribute to the generation and transport of pollutants. Since CN information for regional areas has not been built up, a careful selection of CN is needed to achieve accurate prediction of runoff volume. Storm distribution also found to be considered as an important calibration parameter for the hydrologic simulation.

  • PDF

The Characterization of Incomplete Combustion Products in Open Burning (노천소각에서 배출되는 불완전연소생성물 특성 연구)

  • Jung, No-El;Heo, Sun-Hwa;Jo, Myeong-Ran;Kim, Hyung-Chun;Jang, Se-Kyung;Hong, Ji-Hyung;Dong, Jong-In;Lee, Sang-Bo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.1
    • /
    • pp.48-58
    • /
    • 2014
  • It is very important to investigate air pollutants emissions emitted from open burning in order to control nonpoint sources effectively. In this study, we utilized incineration simulator proposed by U.S EPA and investigated emissions of CO, OC/EC, from household waste and biomass burning to estimate pollutant emissions by illegal incineration of biomass wastes. Emission factor of OC was estimated as 17.1 g/kg for rice strew, 23.5 g/kg for barley, 10.3 g/kg for corn stover, 4.3 g/kg for unseasoned wood, respectively. In case of EC, it was calculated as 1.6 g/kg for rice strew, 4.3 g/kg for barley, 1.4 g/kg for corn stover, 0.6 g/kg for unseasoned wood, respectively. Most of the pollutants emissions were emitted at the stage 1 and 2. In the stage 3, the pollutants concentration decreased gradually. To estimate emissions and build inventory for biomass burning, we need to know accurate activity data. We, therefore, used activity data of both survey results of previous study and statistical data of National Statistical Office. However, we need to perform additional experiments in the future to obtain more accurate activity data for various cases.

A study on the correlation between non-point source pollutants from the forest of Juam basin and algae bloom in the Juam lake. (주암호유역 산림기원 비점오염원물질과 주암호에 서식하는 조류번식간의 상관성 규명)

  • Kim, Nam-Jong;Shin, Dae-Yewn
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.4 s.62
    • /
    • pp.39-48
    • /
    • 2006
  • In Juam basin, the ratio of non-point pollution source among pollutant loading of basin was significantly high, since the utilization level of land was high. In addition, the most pollutants were not treated and flowed out. In this study, the correlation between non-point source pollutants from the forest area and increasing algae was investigated. 1. Chl-a concentration flowed out to runoff from forest area and stream water was low as $0.1{\sim}20.3{\mu}g/{\ell}$ and $0.1{\sim}9.3{\mu}g/{\ell}$, respectively, and chl-a concentration ($0.1{\sim}28.5{\mu}g/{\ell}$) of branch stream was higher $5{\sim}7$ times than that of runoff from forest area. 2. In correlation between runoff from forest area and Juam lake water, annual chl-a concentration of area front Juam dam was higher twice than forest area. 3. In runoff from forest area within Juam basin, flagellate, green, diatom and blue algae occupied $33.0{\sim}41.7%$, $22.2{\sim}30.8%$, $17.3{\sim}22.5%$ and $13.7{\sim}17.6%$, respectively. 4. In runoff from forest area, both green and diatom algae were maintained constantly irrespectively of season, and flagellate algae dominated since August. 5. In characteristics by forest tree types, four types algae were inhabited in mixed forest, and flagellate algae were higher in conifer and broadleaf forest than in other area. And green algae in herbaceous forest were higher than other area.

Characteristics of Water Quality by Storm Runoffs from Intensive Highland Agriculture Area in the Upstream of Han River Basin (한강상류 고령지 농업지역에서의 강우시 비점오염 유출 특성)

  • Jung, Sungmin;Jang, Changwon;Kim, Jai-Ku;Kim, Bomchul
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.102-111
    • /
    • 2009
  • Turbid storm runoff from intensive highland agriculture area has emerged as the major problem of water quality deterioration in the upstream region of the Han River. High slope of the upland combined with high rate of fertilization and intensive plowing causes high rate of soil erosion, and subsequently high suspended sediment and phosphorus content in the runoff water. The variations of water quality during rain spells were surveyed for two years (2005 and 2006) in the Jawoon Stream that is one of hot spots of intensive horticulture discharging turbid storm runoff. SS and TP showed large increase according to the increase of flow rate, whereas TN and BOD showed less fluctuations. Mean EMCs of SS and TP measured for nine rain events were as high as $207mgSS{\cdot}L^{-1}$ and $0.27mgP{\cdot}L^{-1}$, respectively. The export coefficient of SS and TP per area of cultivated field were calculated as $11,912kgSS{\cdot}yr^{-1}{\cdot}km^{-2}$ and $785kgP{\cdot}yr^{-1}{\cdot}km^{-2}$, repectively, which are significantly higher than reports of other area. It can be concluded that SS and TP in the runoffs were high enough to impose major threat to aquatic habitats, and the highland agriculture should be the main target of water quality management or habitat conservation in the study area.

Optimal Operating Condition of Vortex Separator for Combined Sewer Overflows Treatment (합류식 하수관거 월류수 처리를 위한 와류형 분리장치의 최적 운전조건)

  • Han, Jung-kyun;Joo, Jae-young;Lee, Bum-joon;Na, Ji-hun;Park, Chul-hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.557-564
    • /
    • 2009
  • A combined sewer system can quickly drain both storm water and sewage, improve the living environment and resolve flood measures. A combined sewer system is much superior to separate sewer system in reduction of the non-point source pollutant load. However, during rainfall. it is impossible in time, space and economic terms to cope with the entire volume of storm water. A sewage system that exceeds the capacity of the sewer facilities drain into the river mixed with storm-water. In addition, high concentration of CSOs by first-flush increase pollution load and reduce treatment efficiency in sewage treatment plant. The aim of this study was to develope a processing unit for the removal of high CSOs concentrations in relation to water quality during rainfall events in a combined sewer. The most suitable operational design for processing facilities under various conditions was also determined. With a designed discharge of 19.89 m/min, the removal efficiency was good, without excessive overflow, but it was less effective in relation to underflow, and decreased with decreasing particle size and specific gravity. It was necessary to lessen radius of vortex separator for increasing inlet velocity in optimum range for efficient performance, and removal efficiency was considered to high because of rotation increases through enlargement of comparing height of vortex separator in diameter. By distribution of influent particle size, the actual turbulent flow and experimental results was a little different from the theoretical removal efficiency due to turbulent effect in device.

Analysis of First Flushing Effects for the Vineyard Storm Runoff (강우시 포도밭에 대한 초기세척효과 분석)

  • Yoon, Young-Sam;Kwon, Hun-Gak;Lee, Jae-Woon;Yu, Jay-Jung;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.20 no.8
    • /
    • pp.977-986
    • /
    • 2011
  • This study analyzed the characteristics of stormwater runoff in the orchard areas and quantitatively estimated effluence of nonpoint source pollutants for the volume of runoff. Two target areas under vine cultivation were each $2,000m^2$ and $1,800m^2$, located in Gyeongju City. Since grape was the only crop on the target area, the characteristics of stormwater runoff at vineyard could be evaluated independently. A total of 51 rainfall events in the vineyard area during two years(2008-2009) was surveyed, and 19 of them became stormwater runoff, with rainfall ranging 16.5 - 79.7 mm and antecedent dry period of 1-13 days. The pollutant runoff loads by volume of stormwater runoff showed BOD ranging 19.5 - 45.3% in 30% of runoff volume. The average pollution discharge rate was 32.4%, indicating small first flush effect of BOD. The range of SS concentrations was 5 - 52.0% in 10% of runoff volume, showing the average 28.7% of discharge rate, about 3 times more than rainfall effluent. TOC and TN appeared to be similar to the results of BOD, the average discharge rate of 30.9% and 30.6% for TOC and TN, respectively, for 30% of stormwater runoff volume. Average discharge rate of COD and TP in the same runoff volume was 35.1% and 36%, respectively, showing comparatively high discharge ratio. As the targeted vineyard area was permeable land, the pollution load ratio against rainfall-runoff volume appeared to be 1:1, implying no strong first flush effect for all the survey items.

Characteristics of Non-point Pollution Discharge on Stormwater Runoff from Lake Doam Watershed (도암호 유역의 강우시 비점오염물질 유출 특성)

  • Kwak, Sung-Jin;Bhattrai, Bal Dev;Kim, Eun-Jung;Lee, Chang-Keun;Lee, Hyeong-Jin;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.62-71
    • /
    • 2012
  • Lake Doam watershed was surveyed to evaluate non-point source discharge characteristics and discharge load including several water quality parameters in Song Stream from July 2009 to July 2011. Concentrations of water pollutants were high during the rainfall period, especially, SS, TP and COD showed increasing tendencies toward cumulative water discharge but TN did not show much difference. SS, TP and COD had an initial flush effect of over 50 mm rainfall event but there was no clear tendency for rainfalls below that level. Event mean concentration (EMC) regarding the rainy and dry period showed large differences. Especially rainy season EMC (SS, TP, COD) demonstrated an increasingly high tendency. EMCs of COD, SS, TN and TP measured for twelve rain events were as high as 26.1, 866.0, 4.68 and 0.605 mg $L^{-1}$, respectively. COD, SS, TN and TP loadings from the highland agricultural region of the Song Stream watershed were 34,263, 1,250,254, 2,673 and 933 kg $yr^{-1}\;km^{-2}$, respectively, which were relatively higher than the results of other stream systems. Therefore, it is strongly recommended that long-term monitoring and non-point pollution reduction programs for the highland agricultural area to continue. Furthermore, this non-point source pollution loading research acquired from the highland agricultural area could be the base for reassessment.