• Title/Summary/Keyword: Nonpoint Pollution Source

Search Result 242, Processing Time 0.027 seconds

Characteristics of NPS Pollutants and Treatment of Stormwater Runoff in Paved Area during a Storm (강우시 포장지역의 비점오염물질 유출 및 저감특성)

  • Son, Hyun-Geun;Lee, So-Young;Maniquiz, Marla C.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.11 no.2
    • /
    • pp.55-66
    • /
    • 2009
  • The increase of pollutant loadings from nonpoint sources affect the water quality of the major rivers in Korea. Consequently, the need for managing the nonpoint source (NPS) pollution becomes the main concern of the Korean Ministry of Environment (MOE). Recently, the policy was changed from pollutant concentration-restricting approach to the total maximum daily load (TMDL) approach to improve the water quality and protect the aquatic ecosystem. Part of the program is the construction of Best Management Practice (BMP) pilot facilities basically to control NPS. Most of the BMPs adopted were foreign technologies which could not be properly employed in the country due to some limitations such as climate, watershed characteristics, etc. In other words, to be able to apply the BMPs, research on its applicability is necessary. In this study, a three-year monitoring has been conducted to assess the treatment performance of the BMP installed in highway toll plaza and parking lot. The data gathered aid in the characterization of NPS pollutants in runoff and estimation of the pollutant removal efficiency of the BMP. The results will be used for the future implementation of BMP in different land uses as well as for the determination of optimum operation and maintenance.

  • PDF

A Study to Evaluate and Remedy Universal Soil Loss Equation Application for Watersheds and Development Projects (범용토양유실공식의 유역단위 및 개발사업에 대한 적용방안 검토 및 보완에 관한 연구)

  • Woo, Won Hee;Chae, Min Suh;Park, Jong-Yoon;Lee, Hanyong;Park, Youn Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.3
    • /
    • pp.29-42
    • /
    • 2023
  • Universal Soil Loss Equation (USLE) is suggested and employed in the policy to conserve soil resources and to manage the impact of development, since soil loss is very essential to nonpoint source pollution management. The equation requires only five factors to estimate average annual potential soil loss, USLE is simplicity provides benefits in use of the equation. However, it is also limitation of the model, since the estimated results are very sensitive to the five factors. There is a need to examine the application procedures. Three approaches to estimate potential soil loss were examined, In the first approach, all factors were prepared with raster data, soil loss were computed for each cell, and sum of all cell values was determined as soil loss for the watersheds. In the second approach, the mean values for each factor were defined as representing USLE factors, and then the five factors were multiplied to determine soil loss for the watersheds. The third approach was same as the second approach, except that the Vegetative and Mechanical measure was used instead of the Cover and management factor and Support practice factor. The approaches were applied in 38 watersheds, they displayed significant difference, moreover no trends were detected for the soil loss at watersheds with the approaches. Therefore, it was concluded that there is a need to be developed and provided a typical guideline or public systems so that soil loss estimations have consistency with the users.

Analysis of Relationship Between Water Quality Parameters with Land Use in Yeongsan River Basin (영산강 수계의 토지이용과 수질항목 간의 상관관계 분석)

  • Park, Jinhwan;Moon, Myungjin;Kim, Kapsoon
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • The purpose of this study is to provide a base line data to improve the water quality in the Yeongsan River basin. As the major factor that affects the water quality of Yeongsan River is nonpoint pollution source, in order to find a resolve to improve the quality, a study was conducted to identify the correlation between the stream water quality and that of the land use. The study showed that the concentration of the contents in the water from the agricultural land environment was found to be higher as oppose to that found in the content of the water from the forest land. As a result, it can be deducted that agricultural land deteriorates water quality whereas that of the forest land is of much better quality. Therefore, it is highly recommended to take advanced improved care of agricultural land close to a water source to improve the quality of Yeongsan River basin.

Effect of Balloonflower and Potato Cultivation on Runoff and NPS Pollution Loads (도라지와 감자 재배가 유출과 비점오염부하에 미치는 영향)

  • Shin, Jae Young;Shin, Min Hwan;Choi, Yong Hoon;Kang, Hyun Woo;Won, Chul Hee;Hwang, Moon Young;Yang, Hee Jung;Lim, Kyoung Jae;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.89-99
    • /
    • 2012
  • An upland monitoring was conducted for about 4 years with respect to the water and quality of rainfall-runoff. The objective was to characterize of runoff and nonpoint source (NPS) pollution from a sandy field with 4.5 % in slope under balloonflower (2008-2010) and potato (2011) cultivation. Balloonflower was cultivated without any surface cover but potato was grown under plastic mulching. Runoff rate, EMCs and NPS pollution loads were estimated. The first flush effect was evaluated, and the correlation coefficient among the selected water quality indices were analyzed. Average rainfall size was higher by 2.3 mm when balloonflower was cultivated but average runoff rate was higher by 0.02 when potato was cultivated due to the plastic mulching. EMCs monitored from balloonflower field were higher than potato field except SS and TN, but all NPS pollution loads of potato field were 2.1~22.9 times greater than balloonflower field because of larger runoff volume. As a result of first flush effects, balloonflower and potato field were more influenced by increasing of accumulated rainfall and rainfall intensity rather than first flush. In the result of correlation analysis, there were no evident correlations between runoff and water quality indices. However, there were obvious correlations between SS and the other indices except TN. As a result of this study, it was thought that perennial balloonflower crop could help reduce runoff and NPS pollution loads but annual crop with plastic mulching increase them.

Characteristics of Nonpoint Source Pollutant Loads from Forest watershed with Various Water Quality Sampling Frequencies (수질샘플빈도에 따른 산림유역의 비점원오염부하특성)

  • Shin, Min-Hwan;Shi, Yong-Chul;Heo, Sung-Gu;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.65-71
    • /
    • 2008
  • A monsoon season monitoring data from June to September, 2005 of a small forested watershed located at the upstream of the North Han River system in Korea was conducted to analyze the flow variations, the NPS pollutant concentrations, and the pollution load characteristics with respect to sampling frequencies. During the 4-month period, 1,423 mm or 79.2% of annual rainfall(1,797 mm) were occurred and more than 77%, 54% and 68% of annual T-N, $NO_3$-N and T-P loads discharged. Flow rate was continuously measured with automatic velocity and water level meters and 58 water quality samples were taken and analyzed. It was analyzed that the flow volume by random measurement varied very widely and ranged from 79% to 218% of that of continuous measurement. It was recommended that flow measurement of small forested watersheds should be continuously measured with automated flow meters to precisely measure flow rates. Flow-weighted mean concentrations of T-N, $NO_3$-N and T-P during the period were 2.114 mg/L, 0.836 mg/L, and 0.136 mg/L, respectively. T-N, $NO_3$-N and T-P loads were sensitive to the number of samples. And it was analyzed that in order to measure the pollution load within the error of 10% to the true load, the rate of sampling frequency should be higher than 89.7% of the sample numbers that were required to compute the true pollution load. If it is compared to selected foreign research results, about 10 water samples for each rainfall event were needed to compute the pollution load within 10% error. It is unlikely in Korea and recommended that thorough NPS pollution monitoring studies are required to develop the standard monitoring procedures for reliable NPS pollution quantification.

Analysis of the Reduction Effect on NPS Pollution Loads by Surface Cover Application (지표피복재 적용을 통한 비점오염원 저감효과 분석)

  • Shin, Min-Hwan;Won, Chul-Hee;Park, Woon-Ji;Choi, Young-Hun;Jang, Jeong-Ryeol;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.4
    • /
    • pp.29-37
    • /
    • 2011
  • Effect of rice straw mat and wood shaves on the reduction of runoff and nonpoint source (NPS) pollution loads from field plots were experimentally studied. Three runoff plots of $5{\times}22$ m in size and 3 % in slope were prepared on a loamy sand field. Each plot was equipped with a flume to measure runoff and collect water samples. Experimental treatments of surface cover were bare, wood shaves (1,000 kg/ha) and rice straw mat cover (3,000 kg/ha). Under radish was cultivation. During the growing season of the radish, three rainfall-runoff events were monitored. Effect of wood shaves and straw mat cover on runoff reduction was 4~30 % and 33~75 % respectively compared to control. The effect on NPS pollution reduction was 36.8 and 64.3 % in BOD, 41.1 and 80.8 % in SS, 34.0 and 56.1 % in TP and 28.0 and 56.6 % in TN respectively. It was analyzed that the reduction of runoff and NPS pollution were mainly contributed by the decrease of rainfall energy impact and flow velocity and the increase of infiltration due to the surface cover materials. Rice straw mat showed very stable soil cover while large portion of wood shaves were lost during heavy storm events. It was concluded that straw mat was an efficient cover material to reduce NPS pollution from upland fields.

Determination of Detention Basin Size for NPS Control in TMDL Area (수질오염총량관리제하에서 친환경 개발사업을 위한 자연형 비점저감시설의 규모 산정)

  • Jung, Yong-Jun;Lee, Eun-Ju;Lee, So-Young;Lim, Keong-Ho;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.9 no.2
    • /
    • pp.1-8
    • /
    • 2007
  • Since 2000, environmental policies and regulations in Korea are rapidly changing to TMDL(Total Maximum Daily Load) and nonpoint source control. This is due to bad water quality in drinking water sources. Although many environmental facilities having high removal efficiency are constructed and applied in nationwide for controling various pollutants from wastewaters, the water quality in rivers is worse and worse because of nonpoint pollution. In fact, TMDL is a new environmental regulation controling total daily loadings from watershed areas. Actually, the nonpoint pollutant is originated from various landuses and its control is based on TMDL regulation. Therefore, this research is performed to determine the size of detention basin to control nonpoint pollutants from resort developing areas. The detention basin is one of best management practices, which is useful for controling pollutants and flooding from the developing areas. However, it should be designed and constructed with cost effective method. Recent 10 years rainfall data are used to determine the size of detention basin. The cost effective size is determined to 7.4mm accumulated rainfall.

  • PDF

Characteristics of Non-point Pollution Discharge on Stormwater Runoff from Lake Doam Watershed (도암호 유역의 강우시 비점오염물질 유출 특성)

  • Kwak, Sung-Jin;Bhattrai, Bal Dev;Kim, Eun-Jung;Lee, Chang-Keun;Lee, Hyeong-Jin;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.62-71
    • /
    • 2012
  • Lake Doam watershed was surveyed to evaluate non-point source discharge characteristics and discharge load including several water quality parameters in Song Stream from July 2009 to July 2011. Concentrations of water pollutants were high during the rainfall period, especially, SS, TP and COD showed increasing tendencies toward cumulative water discharge but TN did not show much difference. SS, TP and COD had an initial flush effect of over 50 mm rainfall event but there was no clear tendency for rainfalls below that level. Event mean concentration (EMC) regarding the rainy and dry period showed large differences. Especially rainy season EMC (SS, TP, COD) demonstrated an increasingly high tendency. EMCs of COD, SS, TN and TP measured for twelve rain events were as high as 26.1, 866.0, 4.68 and 0.605 mg $L^{-1}$, respectively. COD, SS, TN and TP loadings from the highland agricultural region of the Song Stream watershed were 34,263, 1,250,254, 2,673 and 933 kg $yr^{-1}\;km^{-2}$, respectively, which were relatively higher than the results of other stream systems. Therefore, it is strongly recommended that long-term monitoring and non-point pollution reduction programs for the highland agricultural area to continue. Furthermore, this non-point source pollution loading research acquired from the highland agricultural area could be the base for reassessment.

A Sensitivity Analysis of Cell Size on a Distributed Non-Point Source Pollution Model (분산형 비점오염원 모델에서 단위유역 크기의 민감도 분석)

  • Bae, In-Hee;Park, Jung-Eun;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.952-957
    • /
    • 2005
  • A sensitivity analysis study was performed to examine the effects of cell size on a distributed non-point source pollution model. The model, AnnAGNPS, whiff is a modified version of USDA's AGNPS, was applied to Eung stream watershed, a tributary of Cheongmi stream located in the South Branch of Han River System. The model components and results, such as channel length, slope, land use, and delivery ratio, were analyzed according to the various cell sizes from 10 to 200 ha. As cell sire increases, channel length decreases due to short-circuiting of meandering creek. The decreased channel length has more significant effects on the model results than any other geomorphological change. When the effects of land use and soil distribution are excluded, sediment delivery loads increase due to shorter time to reach the outlet of the watershed in larger tell size. When those effects are included, however, sediment delivery loads decrease in larger fell size because the variety of land use types can not be inputted. The predominant land use in the applied watershed is forest with very low soil erosion such that the predicted sediment delivery might be much lower than real system. The cell size of 30 ha was determined to produce the most appropriate resolution. Surface runoff and non-point source loads of TN, TP and BOD were predicted and the results agree well with the field measurements. From this study, it was shown that the model results would be very dependent on variations of topography, land use, and soil distribution, as a function of cell size, and the optimum cell size is very important for successful application of distributed non-point source pollution model.

Wash-off Characteristics of NPS Pollutants from Forest Landuse (산림지역의 비점오염물질 유출특성 및 EMC 산정)

  • Choi, Ji-Yeon;Lee, So-Young;Kim, Lee-Hyung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.129-134
    • /
    • 2009
  • As a result of improved wastewater treatment facilities, the point source pollution emitted from human and municipal wastes is greatly decreasing. Conversely, the non-point source (NPS) pollution emanated from city streets, rural homes, suburban development, animal feedlot, croplands, and forestry is rapidly increasing. Practically, the main concern of the government is to control NPS pollutants by means of establishing a long term plan in order to protect the aqua-ecosystem. Studies have been conducted to assess the intensity of NPS from various landuses. In Korea, the data on NPS pollutant loadings are limited to few and broadly categorized landuses unlike in USA wherein specific landuses are available. This research aims to characterize the wash-off characteristics of NPS pollutants from forest landuse. Two sites were monitored during 15 storm events from 04/2008 to 10/2008. Mean $BOD_5$ EMCs are 1.13 mg/L and 0.91 mg/L for the two sites, respectively. The results of this research will be a helpful contribution for the assessment of total NPS pollutant loadings.