• Title/Summary/Keyword: Nonparametric

Search Result 846, Processing Time 0.021 seconds

Stochastic Properties of Life Distribution with Increasing Tail Failure Rate and Nonparametric Testing Procedure

  • Lim, Jae-Hak;Park, Dong Ho
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제18권3호
    • /
    • pp.220-228
    • /
    • 2018
  • Purpose: The purpose of this study is to investigate the tail behavior of the life distribution which exhibits an increasing failure rate or other positive aging effects after a certain time point. Methods: We characterize the tail behavior of the life distribution with regard to certain reliability measures such as failure rate, mean residual life and reliability function and derive several stochastic properties regarding such life distributions. Also, utilizing an L-statistic and its asymptotic normality, we propose new nonparametric testing procedures which verify if the life distribution has an increasing tail failure rate. Results: We propose the IFR-Tail (Increasing Failure Rate in Tail), DMRL-Tail (Decreasing Mean Residual Life in Tail) and NBU-Tail (New Better than Used in Tail) classes, all of which represent the tail behavior of the life distribution. And we discuss some stochastic properties of these proposed classes. Also, we develop a new nonparametric test procedure for detecting the IFR-Tail class and discuss its relative efficiency to explore the power of the test. Conclusion: The results of our research could be utilized in the study of wide range of applications including the maintenance and warranty policy of the second-hand system.

공분산분석에서 선형위치통계량을 이용한 비모수 검정법 (Nonparametric method using linear statistics in analysis of covariance model)

  • 최윤정;김동재
    • 응용통계연구
    • /
    • 제30권3호
    • /
    • pp.427-439
    • /
    • 2017
  • 공변량(covariate)이 존재하는 경우, 각 처리군 간 효과의 차이를 검정하기 위한 대표적인 비모수적 방법에는 Quade (1967)가 제안한 검정법이 있다. 또한 반응변수에 대해 공변량으로 단순선형회귀분석을 실시하여 얻은 잔차에 대해 일원배치분산분석과 Kruskal Wallis가 제안한 방법을 적용하는 방법, 그리고 Hwang과 Kim (2012)이 제안한 비모수적 도구인 위치(placement)를 이용한 방법이 있다. 본 논문에서는 공분산분석 모형에서 Hwang과 Kim (2012)이 제안한 방법을 확장하여 공분산분석에서의 새로운 방법을 제안하였다. 또한 모의실험(Monte Carlo simulation study)을 통하여 기존의 검정법들과 제안한 방법의 검정력을 비교하였다.

평률 회귀분석을 위한 추정 방법의 비교 (Comparison of estimation methods for expectile regression)

  • 김종민;강기훈
    • 응용통계연구
    • /
    • 제31권3호
    • /
    • pp.343-352
    • /
    • 2018
  • 설명변수가 주어졌을 때 반응변수의 평균적인 추세뿐만 아니라 극단적인 지역에서의 추세에 대해서 추정하고 싶거나 반응변수 분포의 일반적인 탐색을 위해서는 분위수 회귀분석과 평률 회귀분석을 사용할 수 있다. 본 논문에서는 평률 회귀모형의 추정을 위한 모수적 방법과 비모수적 방법의 성능을 비교하고자 한다. 이를 위해 각 추정 방법을 소개하고 여러 상황의 모의실험 및 실제자료에의 적용을 통해 비교 분석을 실시하였다. 모형에 따라 성능 차이가 있는데 자료의 형태가 복잡하여 변수 간의 관계를 유추하기 힘들 경우 비모수적으로 추정한 평률 회귀분석모형이 더욱 좋은 결과를 보였다. 일반적인 회귀분석의 경우와 달리 평률의 경우 후보가 되는 모수 모형을 상정하기 어렵다는 측면에서 볼 때, 비모수적 방법의 사용이 추천될 수 있다.

반복이 있는 랜덤화 블록 계획법에서 정렬방법과 결합위치를 이용한 비모수 검정법 (Nonparametric procedures using aligned method and joint placement in randomized block design with replications)

  • 이은지;김동재
    • 응용통계연구
    • /
    • 제30권2호
    • /
    • pp.291-299
    • /
    • 2017
  • 반복이 있는 랜덤화 블록 계획법을 검정하는 비모수 검정방법에는 Mack과 Skillings (1980), Mack (1981)가 제안한 방법이 있다. 본 논문에서는 Hodges와 Lehmann (1962)의 정렬 방법과 Chung과 Kim (2007)이 제안한 결합위치 검정법을 확장하여 반복이 있는 랜덤화 블록 모형에서 새로운 비모수적 방법을 제시하였다. 또한 모의실험을 통해 모수적 방법과 기존의 비모수적 방법과의 검정력을 비교하였다.

반복이 있는 랜덤화블록 모형에서 정렬방법과 선형위치통계량을 이용한 비모수 검정법 (Nonparametric method using aligned method and linear placement statistics in randomized block design with replications)

  • 전소영;김동재
    • 응용통계연구
    • /
    • 제30권2호
    • /
    • pp.281-290
    • /
    • 2017
  • 반복이 있는 랜덤화블록 모형에서의 비모수적 검정 방법에는 Mack과 Skillings (1980)가 제안한 방법이 있다. 이 방법은 각각의 관측값을 사용하는 대신 각 블록에서의 반복된 관측값들의 평균을 사용하여 검정하는 방법이다. 따라서 관측치들의 정보를 손실할 수 있다는 단점이 있다. 본 논문에서는 이러한 단점을 보완하기 위해 정렬방법과 선형 위치통계량을 이용한 비모수 검정법을 제안하였다. 또한 몬테카를로 모의실험(Monte-Carlo Study)을 통하여 기존의 방법과 제안한 방법의 검정력을 비교하였다.

정상 비모수 자기상관 오차항을 갖는 회귀분석에 대한 비교 연구 (A comparison study on regression with stationary nonparametric autoregressive errors)

  • 유규상
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.157-169
    • /
    • 2016
  • 이 논문에서는 비선형 자기회귀 과정을 따르는 오차항을 포함한 회귀모형에서 계수추정법의 비교를 다룬다. 비교를 위해 통상적 최소제곱추정량, 일반화 최소제곱추정량, 모수적 회귀오차 수정법, 비모수적 회귀오차 추정법을 비교하였다. 본 논문에서는 또한 비선형 자기회귀모형의 성질을 전형적인 몇가지 비선형자기회귀 모형을 예를 들어 설명한다. 비교연구의 결과 네 가지 추정량 중에 모든 상황에서 최선인 추정량은 존재하지 않았으나 비모수 회귀오차 수정 방법이 일반적으로 우수한 성능을 보임을 알 수 있다.

랜덤화 블록 계획법에서 정렬방법과 결합 위치를 이용한 비모수 검정법 (Nonparametric procedures using aligned method and joint placement in randomized block design)

  • 조성동;김동재
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권1호
    • /
    • pp.95-103
    • /
    • 2013
  • 랜덤화 블록 모형에서 처리 간의 차이 유무를 검정하는 비모수 방법은 일반 대립가설에서는 Friedman (1937)이, 순서 대립가설에서는 Page (1963)가 제안한 검정법이 있다. 이 방법은 각 블록 내 처리 간의 순위를 이용하여 처리 간의 차이를 검정하는 검정법이다. 본 논문에서는 Hodges와 Lehmann (1962)의 정렬 방법과 Chung과 Kim (2007)이 제안한 결합위치 검정법을 확장하여 랜덤화 블록 모형에서 새로운 비모수적 방법을 제시하였다. 또한, 모의실험을 통하여 모수적 방법과 기존의 비모수적 방법과의 검정력을 비교하였다.

랜덤화 블록 모형에서 정렬방법과 위치를 이용한 순서형 대립가설에 대한 비모수 검정법 (Nonparametric procedures based on aligned method and placement for ordered alternatives in randomized block design)

  • 김효숙;김동재
    • 응용통계연구
    • /
    • 제29권4호
    • /
    • pp.707-717
    • /
    • 2016
  • 랜덤화 블록 계획법을 검정하는 비모수 방법은 일반 대립가설에서 Friedman (1937), 순서형 대립가설에서 Page (1963)가 제안한 방법이 있다. 이 방법은 각 블록 내 처리 간 순위를 이용해 처리 간의 차이를 검정하는 방법이다. 본 논문에서는 Hodges와 Lehmann (1962)이 제안한 정렬방법을 이용하여 블록 간 정보의 손실을 줄이고, Orban과 Wolfe (1982)가 제안한 위치를 확장하여, Kim (1999)이 제안한 대조군과 처리군의 방법을 이용하여 랜덤화 블록 모형에서 새로운 비모수 검정 방법을 제안하였다. 또한 Monte Carlo 모의실험을 통해 제안방법과 기존의 검정 방법을 비교하였다.

극단값 분포 추정을 위한 모수적 비모수적 방법 (Parametric nonparametric methods for estimating extreme value distribution)

  • 우승현;강기훈
    • 문화기술의 융합
    • /
    • 제8권1호
    • /
    • pp.531-536
    • /
    • 2022
  • 본 논문은 꼬리가 두꺼운 분포의 꼬리부분에 대한 분포를 추정할 경우 모수적 방법과 비모수적 방법의 성능에 대해 비교하였다. 모수적 방법으로는 일반화 극단값 분포와 일반화 파레토 분포를 이용하였고, 비모수적 방법은 커널형 확률밀도함수 추정방법을 적용하였다. 두 접근법의 비교를 위해 2014년부터 2018년까지 서울시 관측소별 일일 미세먼지 공공데이터를 이용하여 블록 최댓값 모형과 분계점 초과치 모형을 적용하여 함수 추정한 결과를 함께 보이고 2년, 5년, 10년의 재현수준을 통해 고농도의 미세먼지가 일어날 지역을 예측하였다.

반복이 있는 랜덤화 블록 모형에서 정렬방법과 결합위치를 이용한 비모수 다중비교법 (Nonparametric multiple comparison method using aligned method and joint placement in randomized block design with replications)

  • 황주원;김동재
    • 응용통계연구
    • /
    • 제31권5호
    • /
    • pp.599-610
    • /
    • 2018
  • 반복이 있는 랜덤화 블록 모형(randomized block design with replications)에서 비모수 다중비교 방법으로는 Mack과 Skillings (Technometrics, 23, 171-177, 1981) 방법이 있다. 이 방법은 각 블록의 처리에서 반복된 관측값 대신 관측값들의 평균을 이용해 순위를 매기기 때문에 정보의 손실이 발생할 가능성이 있다. 이를 보완하기 위해 본 논문에서는 Hodges와 Lehmann (The Annals of Mathematical Statistics, 33, 482-497, 1962)이 제안한 정렬방법과 Chung과 Kim (Communications for Statistical Applications and Methods, 14, 551-560, 2007)이 제안한 결합위치 검정법을 확장하여 반복이 있는 랜덤화 블록 모형에서 새로운 비모수 다중비교 방법을 제시하였다. 또한 몬테카를로 모의실험(Monte Carlo simulation)을 통해 모수적 방법과 기존의 비모수적 방법과의 family wise error rate (FWE)와 검정력을 비교하였다.