Purpose: The purpose of this study is to investigate the tail behavior of the life distribution which exhibits an increasing failure rate or other positive aging effects after a certain time point. Methods: We characterize the tail behavior of the life distribution with regard to certain reliability measures such as failure rate, mean residual life and reliability function and derive several stochastic properties regarding such life distributions. Also, utilizing an L-statistic and its asymptotic normality, we propose new nonparametric testing procedures which verify if the life distribution has an increasing tail failure rate. Results: We propose the IFR-Tail (Increasing Failure Rate in Tail), DMRL-Tail (Decreasing Mean Residual Life in Tail) and NBU-Tail (New Better than Used in Tail) classes, all of which represent the tail behavior of the life distribution. And we discuss some stochastic properties of these proposed classes. Also, we develop a new nonparametric test procedure for detecting the IFR-Tail class and discuss its relative efficiency to explore the power of the test. Conclusion: The results of our research could be utilized in the study of wide range of applications including the maintenance and warranty policy of the second-hand system.
공변량(covariate)이 존재하는 경우, 각 처리군 간 효과의 차이를 검정하기 위한 대표적인 비모수적 방법에는 Quade (1967)가 제안한 검정법이 있다. 또한 반응변수에 대해 공변량으로 단순선형회귀분석을 실시하여 얻은 잔차에 대해 일원배치분산분석과 Kruskal Wallis가 제안한 방법을 적용하는 방법, 그리고 Hwang과 Kim (2012)이 제안한 비모수적 도구인 위치(placement)를 이용한 방법이 있다. 본 논문에서는 공분산분석 모형에서 Hwang과 Kim (2012)이 제안한 방법을 확장하여 공분산분석에서의 새로운 방법을 제안하였다. 또한 모의실험(Monte Carlo simulation study)을 통하여 기존의 검정법들과 제안한 방법의 검정력을 비교하였다.
설명변수가 주어졌을 때 반응변수의 평균적인 추세뿐만 아니라 극단적인 지역에서의 추세에 대해서 추정하고 싶거나 반응변수 분포의 일반적인 탐색을 위해서는 분위수 회귀분석과 평률 회귀분석을 사용할 수 있다. 본 논문에서는 평률 회귀모형의 추정을 위한 모수적 방법과 비모수적 방법의 성능을 비교하고자 한다. 이를 위해 각 추정 방법을 소개하고 여러 상황의 모의실험 및 실제자료에의 적용을 통해 비교 분석을 실시하였다. 모형에 따라 성능 차이가 있는데 자료의 형태가 복잡하여 변수 간의 관계를 유추하기 힘들 경우 비모수적으로 추정한 평률 회귀분석모형이 더욱 좋은 결과를 보였다. 일반적인 회귀분석의 경우와 달리 평률의 경우 후보가 되는 모수 모형을 상정하기 어렵다는 측면에서 볼 때, 비모수적 방법의 사용이 추천될 수 있다.
반복이 있는 랜덤화 블록 계획법을 검정하는 비모수 검정방법에는 Mack과 Skillings (1980), Mack (1981)가 제안한 방법이 있다. 본 논문에서는 Hodges와 Lehmann (1962)의 정렬 방법과 Chung과 Kim (2007)이 제안한 결합위치 검정법을 확장하여 반복이 있는 랜덤화 블록 모형에서 새로운 비모수적 방법을 제시하였다. 또한 모의실험을 통해 모수적 방법과 기존의 비모수적 방법과의 검정력을 비교하였다.
반복이 있는 랜덤화블록 모형에서의 비모수적 검정 방법에는 Mack과 Skillings (1980)가 제안한 방법이 있다. 이 방법은 각각의 관측값을 사용하는 대신 각 블록에서의 반복된 관측값들의 평균을 사용하여 검정하는 방법이다. 따라서 관측치들의 정보를 손실할 수 있다는 단점이 있다. 본 논문에서는 이러한 단점을 보완하기 위해 정렬방법과 선형 위치통계량을 이용한 비모수 검정법을 제안하였다. 또한 몬테카를로 모의실험(Monte-Carlo Study)을 통하여 기존의 방법과 제안한 방법의 검정력을 비교하였다.
이 논문에서는 비선형 자기회귀 과정을 따르는 오차항을 포함한 회귀모형에서 계수추정법의 비교를 다룬다. 비교를 위해 통상적 최소제곱추정량, 일반화 최소제곱추정량, 모수적 회귀오차 수정법, 비모수적 회귀오차 추정법을 비교하였다. 본 논문에서는 또한 비선형 자기회귀모형의 성질을 전형적인 몇가지 비선형자기회귀 모형을 예를 들어 설명한다. 비교연구의 결과 네 가지 추정량 중에 모든 상황에서 최선인 추정량은 존재하지 않았으나 비모수 회귀오차 수정 방법이 일반적으로 우수한 성능을 보임을 알 수 있다.
Journal of the Korean Data and Information Science Society
/
제24권1호
/
pp.95-103
/
2013
랜덤화 블록 모형에서 처리 간의 차이 유무를 검정하는 비모수 방법은 일반 대립가설에서는 Friedman (1937)이, 순서 대립가설에서는 Page (1963)가 제안한 검정법이 있다. 이 방법은 각 블록 내 처리 간의 순위를 이용하여 처리 간의 차이를 검정하는 검정법이다. 본 논문에서는 Hodges와 Lehmann (1962)의 정렬 방법과 Chung과 Kim (2007)이 제안한 결합위치 검정법을 확장하여 랜덤화 블록 모형에서 새로운 비모수적 방법을 제시하였다. 또한, 모의실험을 통하여 모수적 방법과 기존의 비모수적 방법과의 검정력을 비교하였다.
랜덤화 블록 계획법을 검정하는 비모수 방법은 일반 대립가설에서 Friedman (1937), 순서형 대립가설에서 Page (1963)가 제안한 방법이 있다. 이 방법은 각 블록 내 처리 간 순위를 이용해 처리 간의 차이를 검정하는 방법이다. 본 논문에서는 Hodges와 Lehmann (1962)이 제안한 정렬방법을 이용하여 블록 간 정보의 손실을 줄이고, Orban과 Wolfe (1982)가 제안한 위치를 확장하여, Kim (1999)이 제안한 대조군과 처리군의 방법을 이용하여 랜덤화 블록 모형에서 새로운 비모수 검정 방법을 제안하였다. 또한 Monte Carlo 모의실험을 통해 제안방법과 기존의 검정 방법을 비교하였다.
본 논문은 꼬리가 두꺼운 분포의 꼬리부분에 대한 분포를 추정할 경우 모수적 방법과 비모수적 방법의 성능에 대해 비교하였다. 모수적 방법으로는 일반화 극단값 분포와 일반화 파레토 분포를 이용하였고, 비모수적 방법은 커널형 확률밀도함수 추정방법을 적용하였다. 두 접근법의 비교를 위해 2014년부터 2018년까지 서울시 관측소별 일일 미세먼지 공공데이터를 이용하여 블록 최댓값 모형과 분계점 초과치 모형을 적용하여 함수 추정한 결과를 함께 보이고 2년, 5년, 10년의 재현수준을 통해 고농도의 미세먼지가 일어날 지역을 예측하였다.
반복이 있는 랜덤화 블록 모형(randomized block design with replications)에서 비모수 다중비교 방법으로는 Mack과 Skillings (Technometrics, 23, 171-177, 1981) 방법이 있다. 이 방법은 각 블록의 처리에서 반복된 관측값 대신 관측값들의 평균을 이용해 순위를 매기기 때문에 정보의 손실이 발생할 가능성이 있다. 이를 보완하기 위해 본 논문에서는 Hodges와 Lehmann (The Annals of Mathematical Statistics, 33, 482-497, 1962)이 제안한 정렬방법과 Chung과 Kim (Communications for Statistical Applications and Methods, 14, 551-560, 2007)이 제안한 결합위치 검정법을 확장하여 반복이 있는 랜덤화 블록 모형에서 새로운 비모수 다중비교 방법을 제시하였다. 또한 몬테카를로 모의실험(Monte Carlo simulation)을 통해 모수적 방법과 기존의 비모수적 방법과의 family wise error rate (FWE)와 검정력을 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.