• 제목/요약/키워드: Nonlocal theory

Search Result 444, Processing Time 0.023 seconds

Size dependent axial free and forced vibration of carbon nanotube via different rod models

  • Khosravi, Farshad;Simyari, Mahdi;Hosseini, Seyed A.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.157-172
    • /
    • 2020
  • The aim of this present research is the effect of the higher-order terms of the governing equation on the forced longitudinal vibration of a nanorod model and making comparisons of the results with classical nonlocal elasticity theory. For this purpose, the free axial vibration along with forced one under the two various linear and harmonic axial concentrated forces in zigzag Single-Walled Carbon Nanotube (SWCNT) are analyzed dynamically. Three various theories containing the classical theory, which is called Eringen's nonlocal elasticity, along with Rayleigh and Bishop theories (higher-order theories) are established to justify the nonlocal behavior of constitutive relations. The governing equation and the related boundary conditions are derived from Hamilton's principle. The assumed modes method is adopted to solve the equation of motion. For the free axial vibration, the natural frequencies are calculated for the various values of the nonlocal parameter only based on Eringen's theory. The effects of the nonlocal parameter, thickness, length, and ratio of the excitation frequency to the natural frequency over time in dimensional and non-dimensional axial displacements are investigated for the first time.

Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop's theory

  • Nazemnezhad, Reza;Kamali, Kamran
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.749-758
    • /
    • 2018
  • Free axial vibration of axially functionally graded (AFG) nanorods is studied by focusing on the inertia of lateral motions and shear stiffness effects. To this end, Bishop's theory considering the inertia of the lateral motions and shear stiffness effects and the nonlocal theory considering the small scale effect are used. The material properties are assumed to change continuously through the length of the AFG nanorod according to a power-law distribution. Then, nonlocal governing equation of motion and boundary conditions are derived by implementing the Hamilton's principle. The governing equation is solved using the harmonic differential quadrature method (HDQM), After that, the first five axial natural frequencies of the AFG nanorod with clamped-clamped end condition are obtained. In the next step, effects of various parameters like the length of the AFG nanorod, the diameter of the AFG nanorod, material properties, and the nonlocal parameter value on natural frequencies are investigated. Results of the present study can be useful in more accurate design of nano-electro-mechanical systems in which nanotubes are used.

Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method

  • Pour, Hasan Rahimi;Vossough, Hossein;Heydari, Mohammad Mehdi;Beygipoor, Gholamhossein;Azimzadeh, Alireza
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1061-1073
    • /
    • 2015
  • This paper presents a nonlocal sinusoidal shear deformation beam theory (SDBT) for the nonlinear vibration of single walled carbon nanotubes (CNTs). The present model is capable of capturing both small scale effect and transverse shear deformation effects of CNTs, and does not require shear correction factors. The surrounding elastic medium is simulated based on Pasternak foundation. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion of the CNTs are derived using Hamilton's principle. Differential quadrature method (DQM) for the natural frequency is presented for different boundary conditions, and the obtained results are compared with those predicted by the nonlocal Timoshenko beam theory (TBT). The effects of nonlocal parameter, boundary condition, aspect ratio on the frequency of CNTs are considered. The comparison firmly establishes that the present beam theory can accurately predict the vibration responses of CNTs.

Dynamic response analysis of nanoparticle-nanobeam impact using nonlocal theory and meshless method

  • Isa Ahmadi;Mohammad Naeim Moradi;Mahdi Davar Panah
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.135-153
    • /
    • 2024
  • In this study, the impact response of a nanobeam with a moving nanoparticle is investigated. Timoshenko beam theory is used to model the nanobeam behavior and nonlocal elasticity theory is used to consider the effects of small dimensions. The interaction between the nanoparticle and nanobeam has been described using Lennard-Jones potential theory and the equations are discretized by the radial basis meshless method and a mathematical model is presented for the nanobeam-nanoparticle system. Validation of the proposed model is achieved by comparing the obtained natural frequencies with reference values, demonstrating good agreement. Dimensionless frequency analysis reveals a decrease with increasing nonlocal parameter, pointing out a toughening effect in nanobeam. The dynamic response of the nanobeam and nanoparticle is obtained by time integration of equations of motion using Newmark and Wilson-𝜃 methods. A comparative analysis of the two methods is conducted to determine the most suitable approach for this study. As a distinctive aspect in this study, the analysis incorporates the deformation of the nanobeam resulting from the nanoparticle-nanobeam interaction when calculating the Lennard-Jones force in the nanobeam-nanoparticle system. The numerical findings explore the impact of various factors, including the nonlocal parameter, initial velocity, nanoparticle mass, and boundary conditions.

Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory

  • Timesli, Abdelaziz
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.69-82
    • /
    • 2020
  • In this paper, a new explicit analytical formula is derived for the critical buckling load of Double Walled Carbon Nanotubes (DWCNTs) embedded in Winkler elastic medium without taking into account the effects of the nonlocal parameter, which indicates the effects of the surrounding elastic matrix combined with the intertube Van der Waals (VdW) forces. Furthermore, we present a model which predicts that the critical axial buckling load embedded in Winkler, Pasternak or Kerr elastic medium under axial compression using the nonlocal Donnell shell theory, this model takes into account the effects of internal small length scale and the VdW interactions between the inner and outer nanotubes. The present model predicts that the critical axial buckling load of embedded DWCNTs is greater than that without medium under identical conditions and parameters. We can conclude that the embedded DWCNTs are less susceptible to axial buckling than those without medium.

Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory

  • Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.683-693
    • /
    • 2017
  • According to a generalized nonlocal strain gradient theory (NSGT), dynamic modeling and free vibrational analysis of nanoporous inhomogeneous nanoplates is presented. The present model incorporates two scale coefficients to examine vibration behavior of nanoplates much accurately. Porosity-dependent material properties of the nanoplate are defined via a modified power-law function. The nanoplate is resting on a viscoelastic substrate and is subjected to hygro-thermal environment and in-plane linearly varying mechanical loads. The governing equations and related classical and non-classical boundary conditions are derived based on Hamilton's principle. These equations are solved for hinged nanoplates via Galerkin's method. Obtained results show the importance of hygro-thermal loading, viscoelastic medium, in-plane bending load, gradient index, nonlocal parameter, strain gradient parameter and porosities on vibrational characteristics of size-dependent FG nanoplates.

A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads

  • Abdulrazzaq, Mohammed Abdulraoof;Kadhim, Zeyad D.;Faleh, Nadhim M.;Moustafa, Nader M.
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2020
  • Dynamic stability of graded nonlocal nano-dimension plates on elastic substrate due to in-plane periodic loads has been researched via a novel 3- unknown plate theory based on exact position of neutral surface. Proposed theory confirms the shear deformation effects and contains lower field components in comparison to first order and refined 4- unknown plate theories. A modified power-law function has been utilized in order to express the porosity-dependent material coefficients. The equations of nanoplate have been represented in the context of Mathieu-Hill equations and Chebyshev-Ritz-Bolotin's approach has been performed to derive the stability boundaries. Detailed impacts of static/dynamic loading parameters, nonlocal constant, foundation parameters, material index and porosities on instability boundaries of graded nanoscale plates are researched.

Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Nia, Alireza Farrokhi;Badnava, Salman;Hamouda, A.M.S.
    • Advances in nano research
    • /
    • v.8 no.2
    • /
    • pp.149-156
    • /
    • 2020
  • The present paper explores forced vibrational properties of porosity-dependent functionally graded (FG) cylindrical nanoshells exposed to linear-type or triangular-type impulse load via classical shell theory (CST) and nonlocal strain gradient theory (NSGT). Employing such scale-dependent theory, two scale factors accounting for stiffness softening and hardening effects are incorporated in modeling of the nanoshell. Two sorts of porosity distributions called even and uneven have been taken into account. Governing equations obtained for porous nanoshell have been solved through inverse Laplace transforms technique to derive dynamical deflections. It is shown that transient responses of a nanoshell are affected by the form and position of impulse loading, amount of porosities, porosities dispensation, nonlocal and strain gradient factors.

Vibration analysis of nonlocal porous nanobeams made of functionally graded material

  • Berghouti, Hana;Adda Bedia, E.A.;Benkhedda, Amina;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.7 no.5
    • /
    • pp.351-364
    • /
    • 2019
  • In this work, dynamic behavior of functionally graded (FG) porous nano-beams is studied based on nonlocal nth-order shear deformation theory which takes into the effect of shear deformation without considering shear correction factors. It has been observed that during the manufacture of "functionally graded materials" (FGMs), micro-voids and porosities can occur inside the material. Thus, in this work, the investigation of the dynamic analysis of FG beams taking into account the influence of these imperfections is established. Material characteristics of the FG beam are supposed to be vary continuously within thickness direction according to a "power-law scheme" which is modified to approximate material characteristics for considering the influence of porosities. A comparative study with the known results in the literature confirms the accuracy and efficiency of the current nonlocal nth-order shear deformation theory.

Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams

  • Azandariani, Mojtaba Gorji;Gholami, Mohammad;Nikzad, Akbar
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.37-47
    • /
    • 2022
  • In this paper, the non-linear static analysis of Timoshenko nanobeams consisting of bi-directional functionally graded material (BFGM) with immovable ends is investigated. The scratching in the FG nanobeam mid-plane, is the source of nonlinearity of the bending problems. The nonlocal theory is used to investigate the non-linear static deflection of nanobeam. In order to simplify the formulation, the problem formulas is derived according to the physical middle surface. The Hamilton principle is employed to determine governing partial differential equations as well as boundary conditions. Moreover, the differential quadrature method (DQM) and direct iterative method are applied to solve governing equations. Present results for non-linear static deflection were compared with previously published results in order to validate the present formulation. The impacts of the nonlocal factors, beam length and material property gradient on the non-linear static deflection of BFG nanobeams are investigated. It is observed that these parameters are vital in the value of the non-linear static deflection of the BFG nanobeam.