In this present paper, a new two dimensional (2D) and quasi three dimensional (quasi-3D) nonlocal shear deformation theories are formulated for free vibration analysis of size-dependent functionally graded (FG) nanoplates. The developed theories is based on new description of displacement field which includes undetermined integral terms, the issues in using this new proposition are to reduce the number of unknowns and governing equations and exploring the effects of both thickness stretching and size-dependency on free vibration analysis of functionally graded (FG) nanoplates. The nonlocal elasticity theory of Eringen is adopted to study the size effects of FG nanoplates. Governing equations are derived from Hamilton's principle. By using Navier's method, analytical solutions for free vibration analysis are obtained through the results of eigenvalue problem. Several numerical examples are presented and compared with those predicted by other theories, to demonstrate the accuracy and efficiency of developed theories and to investigate the size effects on predicting fundamental frequencies of size-dependent functionally graded (FG) nanoplates.
Journal of the Korea institute for structural maintenance and inspection
/
v.20
no.5
/
pp.93-101
/
2016
In this study, the governing equations of motion for multi-cracked nonuniform nanobeam based on nonlocal elasticity theory and embedded in an elastic medium were derived. DTM(differential transformation method) was applied to vibration analysis of multi-cracked nonuniform nanobeam based on nonlocal elasticity theory and embedded in an elastic medium. The non-dimensional natural frequencies of this nanobeam were obtained for eoe, crack stiffness and elastic medium stiffness with various boundary conditions. The results obtained by this method was compared with previous works and showed the close agreement between two methods. The important conclusions obtained by this study are as follows : 1. As the length of nanobeam is shorter, the effect of scale coefficient is greater. 2. The locations of crack change non-dimensional natural frequency, In the case of fixed-fixed ends, the non-dimensional natural frequency is the biggest in the first crack location of 0.6L of nanobeam length, and the smallest in both ends. In the case of fixed-free ends, the closer the location of first crack go tho the free end, the bigger the non-dimensional natural frequency. 3. As the stiffness of crack is greater, the non-dimensional natural frequency is smaller, And the effect of crack stiffness is similar on both fixed-free ends and fixed-fixed ends. 4. The bigger the stiffness of elastic medium, the greater the non - dimensional natural frequency.
Eltaher, Mohamed A.;Omar, Fatema-Alzahraa;Abdalla, Waleed S.;Kabeel, Abdallah M.;Alshorbagy, Amal E.
Structural Engineering and Mechanics
/
v.76
no.1
/
pp.141-151
/
2020
This manuscript tends to investigate influences of nanoscale and surface energy on a static bending and free vibration of piezoelectric perforated nanobeam structural element, for the first time. Nonlocal differential elasticity theory of Eringen is manipulated to depict the long-range atoms interactions, by imposing length scale parameter. Surface energy dominated in nanoscale structure, is included in the proposed model by using Gurtin-Murdoch model. The coupling effect between nonlocal elasticity and surface energy is included in the proposed model. Constitutive and governing equations of nonlocal-surface perforated Euler-Bernoulli nanobeam are derived by Hamilton's principle. The distribution of electric potential for the piezoelectric nanobeam model is assumed to vary as a combination of a cosine and linear variation, which satisfies the Maxwell's equation. The proposed model is solved numerically by using the finite-element method (FEM). The present model is validated by comparing the obtained results with previously published works. The detailed parametric study is presented to examine effects of the number of holes, perforation size, nonlocal parameter, surface energy, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric perforated nanobeams. It is found that the effect of surface stresses becomes more significant as the thickness decreases in the range of nanometers. The effect of number of holes becomes significant in the region 0.2 ≤ α ≤ 0.8. The current model can be used in design of perforated nano-electro-mechanical systems (PNEMS).
Karami, Behrouz;Shahsavari, Davood;Janghorban, Maziar;Li, Li
Structural Engineering and Mechanics
/
v.73
no.2
/
pp.191-207
/
2020
This study aims at investigating the size-dependent free vibration of porous nanoplates when exposed to hygrothermal environment and rested on Kerr foundation. Based on the modified power-law model, material properties of porous functionally graded (FG) nanoplates are supposed to change continuously along the thickness direction. The generalized nonlocal strain gradient elasticity theory incorporating three scale factors (i.e. lower- and higher-order nonlocal parameters, strain gradient length scale parameter), is employed to expand the assumption of second shear deformation theory (SSDT) for considering the small size effect on plates. The governing equations are obtained based on Hamilton's principle and then the equations are solved using an analytical method. The elastic Kerr foundation, as a highly effected foundation type, is adopted to capture the foundation effects. Three different patterns of porosity (namely, even, uneven and logarithmic-uneven porosities) are also considered to fill some gaps of porosity impact. A comparative study is given by using various structural models to show the effect of material composition, porosity distribution, temperature and moisture differences, size dependency and elastic Kerr foundation on the size-dependent free vibration of porous nanoplates. Results show a significant change in higher-order frequencies due to small scale parameters, which could be due to the size effect mechanisms. Furthermore, Porosities inside of the material properties often present a stiffness softening effect on the vibration frequency of FG nanoplates.
This research is devoted to study post-buckling analysis of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) micro plate with cut out subjected to magnetic field and resting on elastic medium. The basic formulation of plate is based on first order shear deformation theory (FSDT) and the material properties of FG-CNTRCs are presumed to be changed through the thickness direction, and are assumed based on rule of mixture; moreover, nonlocal Eringen's theory is applied to consider the size-dependent effect. It is considered that the system is embedded in elastic medium and subjected to longitudinal magnetic field. Energy approach, domain decomposition and Rayleigh-Ritz methods in conjunction with Newton-Raphson iterative technique are employed to trace the post-buckling paths of FG-CNTRC micro cut out plate. The influence of some important parameters such as small scale effect, cut out dimension, different types of FG distributions of CNTs, volume fraction of CNTs, aspect ratio of plate, magnitude of magnetic field, elastic medium and biaxial load on the post-buckling behavior of system are calculated. With respect to results, it is concluded that the aspect ratio and length of square cut out have negative effect on post-buckling response of micro composite plate. Furthermore, existence of CNTs in system causes improvement in the post-buckling behavior of plate and different distributions of CNTs in plate have diverse response. Meanwhile, nonlocal parameter and biaxial compression load on the plate has negative effect on post-buckling response. In addition, imposing magnetic field increases the post-buckling load of the microstructure.
Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad;Arani, M.R. Ghorbanpour
Smart Structures and Systems
/
v.23
no.2
/
pp.141-153
/
2019
This research deals with wave propagation of the functionally graded (FG) nano-beams based on the nonlocal elasticity theory considering surface and flexoelectric effects. The FG nano-beam is resting in Winkler-Pasternak foundation. It is assumed that the material properties of the nano-beam changes continuously along the thickness direction according to simple power-law form. In order to include coupling of strain gradients and electrical polarizations in governing equations of motion, the nonlocal non-classical nano-beam model containg flexoelectric effect is used. Also, the effects of surface elasticity, dielectricity and piezoelectricity as well as bulk flexoelectricity are all taken into consideration. The governing equations of motion are derived using Hamilton principle based on first shear deformation beam theory (FSDBT) and also considering residual surface stresses. The analytical method is used to calculate phase velocity of wave propagation in FG nano-beam as well as cut-off frequency. After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as flexoelectric coefficients of the surface, bulk and residual surface stresses, Winkler and shear coefficients of foundation, power gradient index of FG material, and geometric dimensions on the wave propagation characteristics of FG nano-beam. The numerical results indicate that considering surface effects/flexoelectric property caused phase velocity increases/decreases in low wave number range, respectively. The influences of aforementioned parameters on the occurrence cut-off frequency point are very small.
Mustafa Oguz Nalbant;Suleyman Murat Bagdatli;Ayla Tekin
Advances in nano research
/
v.15
no.3
/
pp.215-224
/
2023
Nonlinearity plays an important role in control systems and the application of design. For this reason, in addition to linear vibrations, nonlinear vibrations of the stepped nanobeam are also discussed in this manuscript. This study investigated the vibrations of stepped nanobeams according to Eringen's nonlocal elasticity theory. Eringen's nonlocal elasticity theory was used to capture the nanoscale effect. The nanoscale stepped Euler Bernoulli beam is considered. The equations of motion representing the motion of the beam are found by Hamilton's principle. The equations were subjected to nondimensionalization to make them independent of the dimensions and physical structure of the material. The equations of motion were found using the multi-time scale method, which is one of the approximate solution methods, perturbation methods. The first section of the series obtained from the perturbation solution represents a linear problem. The linear problem's natural frequencies are found for the simple-simple boundary condition. The second-order part of the perturbation solution is the nonlinear terms and is used as corrections to the linear problem. The system's amplitude and phase modulation equations are found in the results part of the problem. Nonlinear frequency-amplitude, and external frequency-amplitude relationships are discussed. The location of the step, the radius ratios of the steps, and the changes of the small-scale parameter of the theory were investigated and their effects on nonlinear vibrations under simple-simple boundary conditions were observed by making comparisons. The results are presented via tables and graphs. The current beam model can assist in designing and fabricating integrated such as nano-sensors and nano-actuators.
Putting emphasis on the effect of existence of porosity in the functionally graded materials (FGMs) on the dynamic responses of waves scattered in FG nanobeams resulted in implementation of a novel porosity-based homogenization method for FGMs and show its applicability in a wave propagation problem in the presence of axial pre-load for the first time. In the employed porosity-dependent method, the coupling between density and Young's moduli is included to consider for the effective moduli of the FG nanobeam by the means of a more reliable homogenization technique. The beam-type element will be modeled via the classical theory of beams, namely Euler-Bernoulli beam theory. Also, the dynamic form of the principle of virtual work will be extended for such nanobeams to derive the motion equations. Applying the nonlocal constitutive equations of Eringen on the obtained motion equations will be resulted in derivation of the nanobeam's governing equations. Depicted results reveal that the dispersion responses of FG nanobeams will be decreased as the porosity volume fraction is increased which must be noticed by the designers of advanced nanosize devices who are interested in employment of wave dispersion approach in continuous systems for specific goals.
Unwanted vibration is an issue in many industrial systems, especially in nano-devices. There are many ways to compensate these unwanted vibrations based on the results of the past researches. Elastic medium and smart material etc. are effective methods to restrain unnecessary vibration. In this manuscript, dynamic analysis of viscoelastic nanosensor which is made of functionally graded (FGM) nanobeams is investigated. It is assumed that, the shaft is flexible. The system is modeled based on Timoshenko beam theory and also environmental condition, external linear varying loads and thermal loading effect are considered. The equations of motion are extracted by using energy method and Hamilton principle to describe the translational and shear deformation's behavior of the system. Governing equations of motion are extracted by supplementing Eringen's nonlocal theory. Finally vibration behavior of system especially the frequency of system is developed by implementation Semi-analytical differential transformed method (DTM). The results are validated in the researches that have been done in the past and shows good agreement with them.
The article is about the theoretical analysis of the transmission and reflection of elastic waves through the interface of perfectly connected materials. The solid continuum mediums considered are piezoelectric semiconductors and transversely isotropic in nature. The connection among the mediums is considered in such a way that it holds the continuity property of field variables at the interface. The concept of strain and stress introduced by non-local theory is also being involved to make the study more applicable It is found that, the incident wave results in the generation of four reflected and three transmitted waves including the thermal and elastic waves. The thermal waves generated in the medium are encountered by using the concept of three phase lag heat model along with fractional ordered time thermoelasticity. The results obtained are calculated graphically for a ZnO material with piezoelectric semiconductor properties for medium M1 and CdSc material with transversely isotropic elastic properties for medium M2. The influence of fractional order parameter, non-local parameter, and steady carrier density parameter on the amplitude ratios of reflected and refraction waves are studied graphically by MATLAB.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.