• Title/Summary/Keyword: Nonlocal theory

Search Result 444, Processing Time 0.022 seconds

Assessment of new 2D and quasi-3D nonlocal theories for free vibration analysis of size-dependent functionally graded (FG) nanoplates

  • Bendaho, Boudjema;Belabed, Zakaria;Bourada, Mohamed;Benatta, Mohamed Atif;Bourada, Fouad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.277-292
    • /
    • 2019
  • In this present paper, a new two dimensional (2D) and quasi three dimensional (quasi-3D) nonlocal shear deformation theories are formulated for free vibration analysis of size-dependent functionally graded (FG) nanoplates. The developed theories is based on new description of displacement field which includes undetermined integral terms, the issues in using this new proposition are to reduce the number of unknowns and governing equations and exploring the effects of both thickness stretching and size-dependency on free vibration analysis of functionally graded (FG) nanoplates. The nonlocal elasticity theory of Eringen is adopted to study the size effects of FG nanoplates. Governing equations are derived from Hamilton's principle. By using Navier's method, analytical solutions for free vibration analysis are obtained through the results of eigenvalue problem. Several numerical examples are presented and compared with those predicted by other theories, to demonstrate the accuracy and efficiency of developed theories and to investigate the size effects on predicting fundamental frequencies of size-dependent functionally graded (FG) nanoplates.

Vibration Analysis of Multi Cracked Nonuniform Nanobeam by using Differential Transformation Method (미분변환법을 이용한 다중 크랙을 갖는 비균일 나노빔의 진동해석)

  • Shin, Young-Jae;Park, Sung-Hyun;Kim, Jin-Hong;Yoo, Yeong-Chan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.93-101
    • /
    • 2016
  • In this study, the governing equations of motion for multi-cracked nonuniform nanobeam based on nonlocal elasticity theory and embedded in an elastic medium were derived. DTM(differential transformation method) was applied to vibration analysis of multi-cracked nonuniform nanobeam based on nonlocal elasticity theory and embedded in an elastic medium. The non-dimensional natural frequencies of this nanobeam were obtained for eoe, crack stiffness and elastic medium stiffness with various boundary conditions. The results obtained by this method was compared with previous works and showed the close agreement between two methods. The important conclusions obtained by this study are as follows : 1. As the length of nanobeam is shorter, the effect of scale coefficient is greater. 2. The locations of crack change non-dimensional natural frequency, In the case of fixed-fixed ends, the non-dimensional natural frequency is the biggest in the first crack location of 0.6L of nanobeam length, and the smallest in both ends. In the case of fixed-free ends, the closer the location of first crack go tho the free end, the bigger the non-dimensional natural frequency. 3. As the stiffness of crack is greater, the non-dimensional natural frequency is smaller, And the effect of crack stiffness is similar on both fixed-free ends and fixed-fixed ends. 4. The bigger the stiffness of elastic medium, the greater the non - dimensional natural frequency.

Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects

  • Eltaher, Mohamed A.;Omar, Fatema-Alzahraa;Abdalla, Waleed S.;Kabeel, Abdallah M.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.141-151
    • /
    • 2020
  • This manuscript tends to investigate influences of nanoscale and surface energy on a static bending and free vibration of piezoelectric perforated nanobeam structural element, for the first time. Nonlocal differential elasticity theory of Eringen is manipulated to depict the long-range atoms interactions, by imposing length scale parameter. Surface energy dominated in nanoscale structure, is included in the proposed model by using Gurtin-Murdoch model. The coupling effect between nonlocal elasticity and surface energy is included in the proposed model. Constitutive and governing equations of nonlocal-surface perforated Euler-Bernoulli nanobeam are derived by Hamilton's principle. The distribution of electric potential for the piezoelectric nanobeam model is assumed to vary as a combination of a cosine and linear variation, which satisfies the Maxwell's equation. The proposed model is solved numerically by using the finite-element method (FEM). The present model is validated by comparing the obtained results with previously published works. The detailed parametric study is presented to examine effects of the number of holes, perforation size, nonlocal parameter, surface energy, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric perforated nanobeams. It is found that the effect of surface stresses becomes more significant as the thickness decreases in the range of nanometers. The effect of number of holes becomes significant in the region 0.2 ≤ α ≤ 0.8. The current model can be used in design of perforated nano-electro-mechanical systems (PNEMS).

Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment

  • Karami, Behrouz;Shahsavari, Davood;Janghorban, Maziar;Li, Li
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.191-207
    • /
    • 2020
  • This study aims at investigating the size-dependent free vibration of porous nanoplates when exposed to hygrothermal environment and rested on Kerr foundation. Based on the modified power-law model, material properties of porous functionally graded (FG) nanoplates are supposed to change continuously along the thickness direction. The generalized nonlocal strain gradient elasticity theory incorporating three scale factors (i.e. lower- and higher-order nonlocal parameters, strain gradient length scale parameter), is employed to expand the assumption of second shear deformation theory (SSDT) for considering the small size effect on plates. The governing equations are obtained based on Hamilton's principle and then the equations are solved using an analytical method. The elastic Kerr foundation, as a highly effected foundation type, is adopted to capture the foundation effects. Three different patterns of porosity (namely, even, uneven and logarithmic-uneven porosities) are also considered to fill some gaps of porosity impact. A comparative study is given by using various structural models to show the effect of material composition, porosity distribution, temperature and moisture differences, size dependency and elastic Kerr foundation on the size-dependent free vibration of porous nanoplates. Results show a significant change in higher-order frequencies due to small scale parameters, which could be due to the size effect mechanisms. Furthermore, Porosities inside of the material properties often present a stiffness softening effect on the vibration frequency of FG nanoplates.

Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT

  • Jamali, M.;Shojaee, T.;Mohammadi, B.;Kolahchi, R.
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.405-417
    • /
    • 2019
  • This research is devoted to study post-buckling analysis of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) micro plate with cut out subjected to magnetic field and resting on elastic medium. The basic formulation of plate is based on first order shear deformation theory (FSDT) and the material properties of FG-CNTRCs are presumed to be changed through the thickness direction, and are assumed based on rule of mixture; moreover, nonlocal Eringen's theory is applied to consider the size-dependent effect. It is considered that the system is embedded in elastic medium and subjected to longitudinal magnetic field. Energy approach, domain decomposition and Rayleigh-Ritz methods in conjunction with Newton-Raphson iterative technique are employed to trace the post-buckling paths of FG-CNTRC micro cut out plate. The influence of some important parameters such as small scale effect, cut out dimension, different types of FG distributions of CNTs, volume fraction of CNTs, aspect ratio of plate, magnitude of magnetic field, elastic medium and biaxial load on the post-buckling behavior of system are calculated. With respect to results, it is concluded that the aspect ratio and length of square cut out have negative effect on post-buckling response of micro composite plate. Furthermore, existence of CNTs in system causes improvement in the post-buckling behavior of plate and different distributions of CNTs in plate have diverse response. Meanwhile, nonlocal parameter and biaxial compression load on the plate has negative effect on post-buckling response. In addition, imposing magnetic field increases the post-buckling load of the microstructure.

Application of nonlocal elasticity theory on the wave propagation of flexoelectric functionally graded (FG) timoshenko nano-beams considering surface effects and residual surface stress

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad;Arani, M.R. Ghorbanpour
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.141-153
    • /
    • 2019
  • This research deals with wave propagation of the functionally graded (FG) nano-beams based on the nonlocal elasticity theory considering surface and flexoelectric effects. The FG nano-beam is resting in Winkler-Pasternak foundation. It is assumed that the material properties of the nano-beam changes continuously along the thickness direction according to simple power-law form. In order to include coupling of strain gradients and electrical polarizations in governing equations of motion, the nonlocal non-classical nano-beam model containg flexoelectric effect is used. Also, the effects of surface elasticity, dielectricity and piezoelectricity as well as bulk flexoelectricity are all taken into consideration. The governing equations of motion are derived using Hamilton principle based on first shear deformation beam theory (FSDBT) and also considering residual surface stresses. The analytical method is used to calculate phase velocity of wave propagation in FG nano-beam as well as cut-off frequency. After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as flexoelectric coefficients of the surface, bulk and residual surface stresses, Winkler and shear coefficients of foundation, power gradient index of FG material, and geometric dimensions on the wave propagation characteristics of FG nano-beam. The numerical results indicate that considering surface effects/flexoelectric property caused phase velocity increases/decreases in low wave number range, respectively. The influences of aforementioned parameters on the occurrence cut-off frequency point are very small.

Investigation of nonlinear vibration behavior of the stepped nanobeam

  • Mustafa Oguz Nalbant;Suleyman Murat Bagdatli;Ayla Tekin
    • Advances in nano research
    • /
    • v.15 no.3
    • /
    • pp.215-224
    • /
    • 2023
  • Nonlinearity plays an important role in control systems and the application of design. For this reason, in addition to linear vibrations, nonlinear vibrations of the stepped nanobeam are also discussed in this manuscript. This study investigated the vibrations of stepped nanobeams according to Eringen's nonlocal elasticity theory. Eringen's nonlocal elasticity theory was used to capture the nanoscale effect. The nanoscale stepped Euler Bernoulli beam is considered. The equations of motion representing the motion of the beam are found by Hamilton's principle. The equations were subjected to nondimensionalization to make them independent of the dimensions and physical structure of the material. The equations of motion were found using the multi-time scale method, which is one of the approximate solution methods, perturbation methods. The first section of the series obtained from the perturbation solution represents a linear problem. The linear problem's natural frequencies are found for the simple-simple boundary condition. The second-order part of the perturbation solution is the nonlinear terms and is used as corrections to the linear problem. The system's amplitude and phase modulation equations are found in the results part of the problem. Nonlinear frequency-amplitude, and external frequency-amplitude relationships are discussed. The location of the step, the radius ratios of the steps, and the changes of the small-scale parameter of the theory were investigated and their effects on nonlinear vibrations under simple-simple boundary conditions were observed by making comparisons. The results are presented via tables and graphs. The current beam model can assist in designing and fabricating integrated such as nano-sensors and nano-actuators.

A novel porosity-based homogenization scheme for propagation of waves in axially-excited FG nanobeams

  • Ebrahimi, Farzad;Dabbagh, Ali
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.379-390
    • /
    • 2019
  • Putting emphasis on the effect of existence of porosity in the functionally graded materials (FGMs) on the dynamic responses of waves scattered in FG nanobeams resulted in implementation of a novel porosity-based homogenization method for FGMs and show its applicability in a wave propagation problem in the presence of axial pre-load for the first time. In the employed porosity-dependent method, the coupling between density and Young's moduli is included to consider for the effective moduli of the FG nanobeam by the means of a more reliable homogenization technique. The beam-type element will be modeled via the classical theory of beams, namely Euler-Bernoulli beam theory. Also, the dynamic form of the principle of virtual work will be extended for such nanobeams to derive the motion equations. Applying the nonlocal constitutive equations of Eringen on the obtained motion equations will be resulted in derivation of the nanobeam's governing equations. Depicted results reveal that the dispersion responses of FG nanobeams will be decreased as the porosity volume fraction is increased which must be noticed by the designers of advanced nanosize devices who are interested in employment of wave dispersion approach in continuous systems for specific goals.

Vibration analysis thermally affected viscoelastic nanosensors subjected to linear varying loads

  • Ebrahimi, Farzad;Babaei, Ramin;Shaghaghi, Gholam Reza
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.399-422
    • /
    • 2018
  • Unwanted vibration is an issue in many industrial systems, especially in nano-devices. There are many ways to compensate these unwanted vibrations based on the results of the past researches. Elastic medium and smart material etc. are effective methods to restrain unnecessary vibration. In this manuscript, dynamic analysis of viscoelastic nanosensor which is made of functionally graded (FGM) nanobeams is investigated. It is assumed that, the shaft is flexible. The system is modeled based on Timoshenko beam theory and also environmental condition, external linear varying loads and thermal loading effect are considered. The equations of motion are extracted by using energy method and Hamilton principle to describe the translational and shear deformation's behavior of the system. Governing equations of motion are extracted by supplementing Eringen's nonlocal theory. Finally vibration behavior of system especially the frequency of system is developed by implementation Semi-analytical differential transformed method (DTM). The results are validated in the researches that have been done in the past and shows good agreement with them.

Transmission/reflection phenomena of waves at the interface of two half-space mediums with nonlocal theory

  • Adnan, Jahangir;Abdul, Waheed;Ying, Guo
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.305-314
    • /
    • 2023
  • The article is about the theoretical analysis of the transmission and reflection of elastic waves through the interface of perfectly connected materials. The solid continuum mediums considered are piezoelectric semiconductors and transversely isotropic in nature. The connection among the mediums is considered in such a way that it holds the continuity property of field variables at the interface. The concept of strain and stress introduced by non-local theory is also being involved to make the study more applicable It is found that, the incident wave results in the generation of four reflected and three transmitted waves including the thermal and elastic waves. The thermal waves generated in the medium are encountered by using the concept of three phase lag heat model along with fractional ordered time thermoelasticity. The results obtained are calculated graphically for a ZnO material with piezoelectric semiconductor properties for medium M1 and CdSc material with transversely isotropic elastic properties for medium M2. The influence of fractional order parameter, non-local parameter, and steady carrier density parameter on the amplitude ratios of reflected and refraction waves are studied graphically by MATLAB.