• 제목/요약/키워드: Nonlinear-dynamic analysis

검색결과 1,675건 처리시간 0.033초

비내진 상세를 가진 1:5 축소 철근콘크리트 골조의 비선형 거동에 대한 실험과 해석의 상관성 연구 (A Study of Correlation between Experiment and Analysis of Nonlinear Behaviors of A 1:5 Scale RC Frame with Nonseismic Details)

  • 이한선;우성우;허윤섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.483-486
    • /
    • 1999
  • A series of dynamic and static tests were conducted to observe the actual responses of a 1:5 scale 3-story reinforced concrete (RC) frame which was designed only for gravity loads. One of the major objectives of these experiments are to provide the calibration to the available static and dynamic inelastic techniques. In this study, the experimental results were simulated by using a nonlinear analysis program for reinforced concrete frame, IDARC-2D. The evaluation of the degree of the simulation leads to the conclusion that while the global behaviors such as story drifts and shears can be in general simulated with the limited accuracy in the dynamic nonlinear analysis, it is rather easy and simple to get the fairly high level of accuracy in the prediction of global and local behaviors in the static nonlinear analysis by using IDARC-2D.

  • PDF

A nonlinear structural experiment platform with adjustable plastic hinges: analysis and vibration control

  • Li, Luyu;Song, Gangbing;Ou, Jinping
    • Smart Structures and Systems
    • /
    • 제11권3호
    • /
    • pp.315-329
    • /
    • 2013
  • The construction of an experimental nonlinear structural model with little cost and unlimited repeatability for vibration control study represents a challenging task, especially for material nonlinearity. This paper reports the design, analysis and vibration control of a nonlinear structural experiment platform with adjustable hinges. In our approach, magnetorheological rotary brakes are substituted for the joints of a frame structure to simulate the nonlinear material behaviors of plastic hinges. For vibration control, a separate magnetorheological damper was employed to provide semi-active damping force to the nonlinear structure. A dynamic neural network was designed as a state observer to enable the feedback based semi-active vibration control. Based on the dynamic neural network observer, an adaptive fuzzy sliding mode based output control was developed for the magnetorheological damper to suppress the vibrations of the structure. The performance of the intelligent control algorithm was studied by subjecting the structure to shake table experiments. Experimental results show that the magnetorheological rotary brake can simulate the nonlinearity of the structural model with good repeatability. Moreover, different nonlinear behaviors can be achieved by controlling the input voltage of magnetorheological rotary damper. Different levels of nonlinearity in the vibration response of the structure can be achieved with the above adaptive fuzzy sliding mode control algorithm using a dynamic neural network observer.

Perturbation and Nonlinear Dynamic Analysis of Sustained Vowels in Normal and Pathological Voices

  • 이지연;최성희;;한민수;최홍식
    • 말소리와 음성과학
    • /
    • 제2권1호
    • /
    • pp.113-120
    • /
    • 2010
  • In this paper, we investigate the acoustic characteristics of sustained voices from normal subjects and patients with laryngeal pathologies. Perturbation methods (including jitter and shimmer), signal-to-noise ratio (SNR), and nonlinear dynamic methods (such as correlation dimension) are used to analyze normal and pathological voices. We find that jitter does not statistically discriminate between normal and pathological voices, but a significant difference is found for shimmer, SNR, and correlation dimension. The results suggest that nonlinear dynamic analysis may be valuable for the analysis of normal and pathological voices but perturbation analysis should be applied with caution for pathological voice analysis.

  • PDF

Nonlinear dynamic analysis of reinforced concrete shell structures

  • Kim, T.H.;Park, J.G.;Choi, J.H.;Shin, H.M.
    • Structural Engineering and Mechanics
    • /
    • 제34권6호
    • /
    • pp.685-702
    • /
    • 2010
  • In this paper, a nonlinear finite element procedure is presented for the dynamic analysis of reinforced concrete shell structures. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used. A 4-node flat shell element with drilling rotational stiffness was used for spatial discretization. The layered approach was used to discretize the behavior of concrete and reinforcement in the thickness direction. Material nonlinearity was taken into account by using tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach was incorporated. The low-cycle fatigue of both concrete and reinforcing bars was also considered to predict a reliable dynamic behavior. The solution to the dynamic response of reinforced concrete shell structures was obtained by numerical integration of the nonlinear equations of motion using Hilber-Hughes-Taylor (HHT) algorithm. The proposed numerical method for the nonlinear dynamic analysis of reinforced concrete shell structures was verified by comparison of its results with reliable experimental and analytical results.

구동장치의 동강성을 고려한 미사일 조종날개의 비선형 플러터 해석 (Nonlinear Flutter Analysis of Missile Fin considering Dynamic Stiffness of Actuator)

  • 신원호;배재성;이인;한재흥;신영석;이열화
    • 한국항공우주학회지
    • /
    • 제33권2호
    • /
    • pp.54-59
    • /
    • 2005
  • 구동기의 백래쉬와 동강성을 고려한 미사일 조종날개의 비선형 공탄성 해석이 수행되었다. 아음속 비정상 공기력 계산을 위해 DHM을 사용하였고 최소상태접근법을 사용하여 근사하였다. 비선형 플러터 해석을 위해 백래쉬는 유격으로 모델하고 기술 함수법을 사용하여 선형화하였다. 또한, 동강성은 주파수의 함수로 모터의 운동방정식으로부터 계산하였다. 선형 및 비선형 플러터 해석 결과들은 공력탄성학적 특성들이 백래쉬와 동강성에 중요한 영향을 받는다는 것을 보여준다. 비선형 플러터 해석에서 다양한 제한 주기 운동이 선형플러터 속도 이하에서 관측되었다. 또한 플러터 특성과 응답을 시간영역에서도 조사하였다.

부구조물 합성법을 이용한 접는 미사일 조종날개 모델 수립 (Model Establishment of a Deployable Missile Control Fin Using Substructure Synthesis Method)

  • 김대관;배재성;이인;한재흥
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.813-820
    • /
    • 2005
  • A deployable missile control fin has some structural nonlinearities because of the worn or loose hinges and the manufacturing tolerance. The structural nonlinearity cannot be eliminated completely, and exerts significant effects on the static and dynamic characteristics of the control fin. Thus, It is important to establish the accurate deployable missile control fin model. In the present study, the nonlinear dynamic model of 4he deployable missile control fin is developed using a substructure synthesis method. The deployable missile control fin can be subdivided Into two substructures represented by linear dynamic models and a nonlinear hinge with structural nonlinearities. The nonlinear hinge model is established by using a system identification method, and the substructure modes are improved using the Frequency Response Method. A substructure synthesis method Is expanded to couple the substructure models and the nonlinear hinge model, and the nonlinear dynamic model of the fin is developed. Finally, the established nonlinear dynamic model of the deployable missile control fin is verified by dynamic tests. The established model is In good agreement with test results, showing that the present approach is useful in aeroelastic stability analyses such as time-domain nonlinear flutter analysis.

Nonlinear analysis of 3D reinforced concrete frames: effect of section torsion on the global response

  • Valipour, Hamid R.;Foster, Stephen J.
    • Structural Engineering and Mechanics
    • /
    • 제36권4호
    • /
    • pp.421-445
    • /
    • 2010
  • In this paper the formulation of an efficient frame element applicable for nonlinear analysis of 3D reinforced concrete (RC) frames is outlined. Interaction between axial force and bending moment is considered by using the fibre element approach. Further, section warping, effect of normal and tangential forces on the torsional stiffness of section and second order geometrical nonlinearities are included in the model. The developed computer code is employed for nonlinear static analysis of RC sub-assemblages and a simple approach for extending the formulation to dynamic cases is presented. Dynamic progressive collapse assessment of RC space frames based on the alternate path method is undertaken and dynamic load factor (DLF) is estimated. Further, it is concluded that the torsional behaviour of reinforced concrete elements satisfying minimum standard requirements is not significant for the framed structures studied.

Dynamic Analysis of Harmonically Excited Non-Linear System Using Multiple Scales Method

  • Moon, Byung-Young;Kang, Beom-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제16권6호
    • /
    • pp.819-828
    • /
    • 2002
  • An analytical method is presented for evaluation of the steady state periodic behavior of nonlinear systems. This method is based on the substructure synthesis formulation and a MS (multiple scales) procedure, which is applied to the analysis of nonlinear responses. The proposed procedure reduces the size of large degrees-of-freedom problem in solving nonlinear equations. Feasibility and advantages of the proposed method are illustrated with the nonlinear rotating machine system as an example of large mechanical structure systems. In addition, its efficiency for nonlinear response prediction will be shown by comparison of other conventional methods.

섬유요소를 이용한 교량의 3차원 지진해석 (3D Nonlinear Seismic Analysis of a Bridge Using Fiber Element)

  • 조정래;곽임종;조창백;김병석;김영진
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.141-146
    • /
    • 2002
  • In the present design concept, the nonlinear behavior of bridges is allowed under large earthquake. Therefore, demands for nonlinear analyses of bridges are increased more and more especially in the area of seismic assessment. It is, however, difficult to solve the problem how the nonlinearity of columns should be modelled. In this study, the fiber element Is adopted for model ins pier column. The element is a kind of structural elements like frame element, and it can model the distributed plasticity of plastic hinge. A 3 span continuos bridge is taken for seismic analysis. First, the nonlinear static analysis the column at fixed support are performed so that the characteristics of column is investigated. Second, the nonlinear dynamic analyses of the full bridge model is performed, considering 3 directional earthquake excitations.

  • PDF

지반강성을 고려한 중저층 가새모멘트저항골조의 내진 목표성능평가 (Seismic Object Performance Evaluation of Braced Steel Moment Resisting Frames with Low Rise Building under Different Site Stiffness)

  • 김수정;최병정;박호영;이진우
    • 한국지진공학회논문집
    • /
    • 제20권2호
    • /
    • pp.91-101
    • /
    • 2016
  • This study is the compared seismic performance that are difference between the performance of structures on various site classes and beam-column connection. this analysis model was designed the previous earthquake load. To compare the performance levels of the structure was subjected to nonlinear static and nonlinear dynamic analysis. Nonlinear analysis was used to The Perform 3D program. Nonlinear static analysis was compared with the performance point and Nonlinear dynamic analysis was compared the drift ratio(%). Analysis results, the soft site class of the displacement was more increase than rock site classes of the displacement. Also The smaller the displacement was increased beam-column connection stiffness.