• Title/Summary/Keyword: Nonlinear wave focusing

Search Result 18, Processing Time 0.025 seconds

Nonlinear Time Reversal Focusing and Detection of Fatigue Crack

  • Jeong, Hyun-Jo;Barnard, Dan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.355-361
    • /
    • 2012
  • This paper presents an experimental study on the detection and location of nonlinear scattering source due to the presence of fatigue crack in a laboratory specimen. The proposed technique is based on a combination of nonlinear elastic wave spectroscopy(NEWS) and time reversal(TR) focusing approach. In order to focus on the nonlinear scattering position due to the fatigue crack, we employed only one transmitting transducer and one receiving transducer, taking advantage of long duration of reception signal that includes multiple linear scattering such as mode conversion and boundary reflections. NEWS technique was then used as a pre-treatment of TR for spatial focusing of reemitted second harmonic signal. The robustness of this approach was demonstrated on a cracked specimen and the nonlinear TR focusing behavior is observed on the crack interface from which the second harmonic signal was originated.

A Study of the Appearance Characteristics and Generation Mechanism of Giant Waves (대양에서의 거대파랑 출현 특성과 발생 기구에 관한 연구)

  • Shin Seung-Ho;Hong Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.30 no.3 s.109
    • /
    • pp.181-187
    • /
    • 2006
  • In the wave spectrum distribution based on linear wave theory, the appearance of a giant wave whose wave height reaches to 30m has been considered next to almost impossible in a real sea However since more than 10 giant waves were observed in a recent investigation of global wave distribution which was carried out by the analysis of SAR imagines for three weeks, the existence of the giant waves is being recognized and it is considered the cause of many unknown marine disasters. The change of wave height distribution concerning a formation of wave train, nonlinear wave to wave interaction and so on were raised as the causes of the appearance of the giant waves, but the occurrence mechanism of the giant waves hasn't been cleared yet. In present study, we investigated appearance circumstances of the giant waves in real sea and its occurrence mechanism was analyzed based on linear and nonlinear wave focusing theories. Also, through a development of numerical model of the nonlinear $schr\"{o}dinger$ equation, the formations of the giant wave from progressive wave train were reproduced.

Nonlinear Focusing Wave Group on Current (흐름의 영향을 받는 파랑 그룹의 비선형 집중)

  • Touboul, Julien;Pelinovsky, Efim;Kharif, Christian
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.3
    • /
    • pp.222-227
    • /
    • 2007
  • Formation of freak waves is studied in deep water from transient wave packets propagating on current. Those waves are obtained by means of dispersive focusing. This process is investigated by solving both linear and nonlinear equations. The role of nonlinearity is emphasized in this interaction.

A Computational Study of the Focusing Phenomenon of Weak Shock Wave (약한 충격파의 포커싱 현상에 관한 수치해석적 연구)

  • Kweon Yong Hun;Kim Heuy Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.169-172
    • /
    • 2002
  • When a plane shockwave reflects ken a concave wall, it is focused at a certain location, resulting in extremely high local pressure and temperature. This focusing is due to a nonlinear phenomenon of shock wave. The focusing phenomenon has been extensively applied to many diverse folds of engineering and medical treatment as well. In the current study, the focusing of shock wave over a reflector is numerically investigated using a CFD method. The Harten-Yee total variation diminishing (TVD) scheme is used to solve the unsteady, two-dimensional, compressible, Euler equations. The incident shock wave Mach number $M_{s}\;of\;1.1{\~}l.3$ is applied to the parabolic reflectors with several different depths. Detailed focusing characteristics of the shock wave are investigated in terms of peak pressure, gasdynamic and geometrical foci. The results obtained are compared with the previous experimental results. The results obtained show that the peak pressure of shock wave focusing and its location strongly depend on the magnitude of the incident shock wave and depth of parabolic reflector. It is also found that depending up on the depth of parabolic reflector, the weak shock wave focusing process can classified into three distinct patterns : the reflected shock waves do not intersect each other before and after focusing, the reflected shock waves do not intersect each other before focusing, but intersect after focusing, and the reflected shock waves intersect each other before and after focusing. The predicted Schlieren images represent the measured shock wave focusing with a good accuracy.

  • PDF

A Study of the Characteristics and Mechanism of Giant wave Appearance (대양에서의 거대파랑 출현 특성과 기구에 관한 연구)

  • Shin Seung-Ho;Hong Keyyong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.147-152
    • /
    • 2005
  • 선형파 이론에 의한 파랑스펙트럼 분포에 의해서는 30m 크기의 파랑은 현실적으로 거의 발생 불가능하다고 인식되어 왔다. 그러나 최근의 위성 영상을 이용한 조사에 의해 3주간의 기간 통안 25m 이상의 거대파가 10개 이상 관측됨에 따라 실해역에서 빈번히 마주칠 수 있는 현상임이 입증되었으며 이에 따라 지금까지 이유 불명으로 치부되어 왔던 많은 해양 재난이 거대파에 의해 발생했던 것으로 추정되고 있다. 거대파의 발생원인은 파군 형성과 관련한 파고분포 특성의 변화, 전파하는 파군의 비선형 공명간섭 통이 제기되고 있으나, 그 출현의 복잡성과 자료의 부족 등으로 아직 명확하게 해명되지 못하고 있다. 본 연구에서는 실해역에서 발생하는 거대파의 특성 및 선형 및 비선형이론에 근거한 거대파 발생 기구를 고찰하고 비선형 파랑전파를 모사할 수 있는 수치모형을 개발하였다.

  • PDF

Numerical Analysis of Shock-Wave Focusing from a Two-Dimensional Parabolic Reflector (2차원 포물형 반사경에 의한 충격파의 촛점형성에 대한 수치해석)

  • 최환석;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.612-623
    • /
    • 1994
  • Shock-wave focusing from a two-dimensional parabolic reflector was simulated using an explicit finite volume upwind TVD scheme. Computations were performed for three different incident shock speeds of $M_s$ = 1.1, 1.2 and 1.3, corresponding to the relatively weak, intermediate, and strong shock waves, respectively. Numerical solutions nicely resolved all the waves evolving through the focusing process. As the incident shock strength increase, a transition was observed in the shock-fronts geometry that was caused by the change in the reflection type of converging shock fronts on the axis of symmetry, from regular-type to Mach-type reflection. The computed maximum on-axis pressure amplification and the trajectories of three-wave intersections showed good agreement with experimental results. The strong nonlinear effect near the focal region which determines the shock-fronts geometries at and behind the focus and at the same time confines the pressure amplification at the focus was clearly revealed from the present numerical simulation.

Laboratory study on the modulation evolution of nonlinear wave trains

  • Dong, G.H.;Ma, Y.X.;Zhang, W.;Ma, X.Z.
    • Ocean Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.189-203
    • /
    • 2012
  • New experiments focusing on the evolution characteristics of nonlinear wave trains were conducted in a large wave flume. A series of wave trains with added sidebands, varying initial steepness, perturbed amplitudes and frequencies, were physically generated in a long wave flume. The experimental results show that the increasing wave steepness, increases the speed of sidebands growth. To study the frequency and phase modulation, the Morlet wavelet transform is adopted to extract the instantaneous frequency of wave trains and the phase functions of each wave component. From the instantaneous frequency, there are local frequency downshifts, even an effective frequency downshift was not observed. The frequency modulation increases with an increase in amplitude modulation, and abrupt changes of instantaneous frequencies occur at the peak modulation. The wrapped phase functions show that in the early stage of the modulation, the phase of the upper sideband first diverges from that of the carrier waves. However, at the later stage, the discrepancy phase from the carrier wave transformed to the lower sideband. The phase deviations appear in the front of the envelope's peaks. Furthermore, the evolution of the instantaneous frequency exhibits an approximate recurrence-type for the experiment with large imposed sidebands, even when the corresponding recurrence is not observed in the Fourier spectrum.

Numerical Computations of Extreme Wave Load on a Cylinder Using Frequency-Focusing unidirectional waves

  • Kyoung, Jo-Hyun;Hong, Sa-Young;Sung, Hong-Gun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.135-140
    • /
    • 2006
  • Numerical computations are made to predict wave loads on a vertical cylinder in an extreme wave. To generate the extreme wave, a frequency-focused unidirectional wave is adopted in three-dimensional numerical wave tank. The mathematical formulation is wide in the scope of the potential theory with fully nonlinear free surface conditions. As a numerical method, finite element method based on variational principle is applied. Comparisons between the present numerical results and the previous computation data. show a good agreement.

  • PDF

On the Statistical Characteristics of the New Year Wave (New Year Wave의 통계적 특성에 대하여)

  • Kim, Do Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.102-108
    • /
    • 2013
  • In this paper time series wave data, which were measured at the Draupner platform in the North Sea on 1995, are used to investigate statistical characteristics of nonlinear wave. Various statistical properties based on time and frequency domain are examined. The Gram-Chalier distribution fits the probability of wave elevation better than the Gaussian distribution. The skewness of wave profile is 0.393 and the kurtosis is 4.037 when the freak wave is occurred. The nonlinearity of D1520 data is higher than two adjacent wave data. AI index of the New Year Wave is 2.11 and the wave height is 25.6m. The zero crossing wave period of the New Year Wave is 12.5s which is compared to the average zero up-crossing period 11.3s. The significant steepness of wave data is 0.077 when the freak wave was occurred. H1/3/${\eta}_s$ does not increases as the kurtosis increases and the values is close to 4. The New Year Wave belongs to highly nonlinear wave data packet but the AI index is within linear focusing range.

Active Focusing of Light in Plasmonic Lens via Kerr Effect

  • Nasari, Hadiseh;Abrishamian, Mohammad Sadegh
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.305-312
    • /
    • 2012
  • We numerically demonstrate the performance of a plasmonic lens composed of an array of nanoslits perforated on thin metallic film with slanted cuts on the output surface. Embedding Kerr nonlinear material in nanoslits is employed to modulate the output beam. A two dimensional nonlinear-dispersive finite-difference time-domain (2D N-D-FDTD) method is utilized. The performance parameters of the proposed lens such as focal length, full-width half-maximum, depth of focus and the efficiency of focusing are investigated. The structure is illuminated by a TM-polarized plane wave and a Gaussian beam. The effect of the beam waist of the Gaussian beam and the incident light intensity on the focusing effect is explored. An exact formula is proposed to derive electric field E from electric flux density D in a Kerr-Dispersive medium. Surface plasmon (SPs) modes and Fabry-Perot (F-P) resonances are used to explain the physical origin of the light focusing phenomenon. Focused ion beam milling can be implemented to fabricate the proposed lens. It can find valuable potential applications in integrated optics and for tuning purposes.