• Title/Summary/Keyword: Nonlinear torque

Search Result 375, Processing Time 0.026 seconds

Characteristics Analysis in Interior Permanent Magnet Synchronous Motor Considering Parameters Variation (파라미터 가변을 고려한 매입형 영구자석 동기전동기의 특성해석)

  • Kang, Gyu-Hong;Hong, Jung-Pyo;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.7
    • /
    • pp.468-474
    • /
    • 2000
  • This paper presents an investigation of the parameter modeling on the basis of Finite Element (FE) analysis in which the variable frequency characteristic in field weakening is considered in Interior Permanent Magnet Synchronous Motors (IPMSM). The parameters of IPMSM have nonlinear characteristics not only in accordance with the load variation but also with the current phase angle of a system fed inverter. From the results of FE analysis, the performances of torque and speed-power are simulated and the validity of the proposed FE analysis is compared with experimental results.

  • PDF

A Study for the Optimum Design of Fan Motor In Refrigerator Using A Niching Algorithm and Characteristic Analysis Using The Finite E16men1 Method (F.E.M.을 이용한 냉장고용 FAN 모터의 해석과 Niching Algorithm을 이용한 최적 설계에 관한 연구)

  • Han, Dong-Kyu;Chung, Tae-Kyung;Jin, Yong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.214-216
    • /
    • 1999
  • This paper discussed an optimal designs of 2 pole fan motors in refrigerator using a Niching Algorithm. We applied a Niching method to multi-objective optimal design of air gap construct. This Niching genetic algorithm is called "Restricted Competition Selection"(RCS) that is suitable for real world problem such as shape or structural optimization of electromagnetic device. The finite element method being used for nonlinear numerical characteristic analysis is provided exact solution in the system. Through this process is reduced the cogging torque ripple in air gap.

  • PDF

An Optimal Design of BLDC Motor Using Rare Earth Magnet By Niching Genetic Algorithm (Niching 유전 알고리즘을 이용한 희토류 자석 BLDC 모터의 최적설계)

  • Chung, Byung-Ho;Chung, Tae-Kyung;Jin, Yang-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.717-719
    • /
    • 2000
  • In this paper, we discussed an optimal design of BLDC motor using rare earth magnet. In motor design using rare earth magnet, because of the characteristics that rare earth magnets have high remanence, the effect of saturation of steel has to be considered. For this, we used nonlinear finite clement method. For optimal design, a Niching genetic algorithm is used. As a result, we found out a set of BLDC motor shapes increasing motor efficiency, and decreasing cogging torque.

  • PDF

A BLDCM Drive with Trapezoidal Back EMF using 4 Switch Three-Phase Inverter (4 스위치를 이용한 구형파 역기전력을 갖는 BLDC구동에 관한 연구)

  • Lee, Joon-Hwan;Ahn, Sung-Chan;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1108-1110
    • /
    • 2000
  • The BLDCM(Brushless DC motor) has been the Trapezoidal Back Electromotive Force(EMF) due to a surface magnet rotor with nonlinear distribution and full-pitch windings. Theoretically, it should be fed with rectangular phase current in order to minimize torque ripple. But, because voltage source inverter drives BLDCM, perfectly rectangular phase currents are not available. Now in this paper, using fourier series coefficients, calculating the coefficients of harmonic current within available orders and each harmonic component are controlled on stationary frame. Only using four switches, low cost and small size drive can be made and proposed method will be more useful in industrial. Simulation and experimental results prove the validity of the proposed method.

  • PDF

Parametric analysis and torsion design charts for axially restrained RC beams

  • Bernardo, Luis F.A.;Taborda, Catia S.B.;Gama, Jorge M.R.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.1-27
    • /
    • 2015
  • This article presents a theoretical parametric analysis on the ultimate torsional behaviour of axially restrained reinforced concrete (RC) beams. This analysis is performed by using a computing procedure based on a modification of the Variable Angle Truss Model. This computing procedure was previously developed to account for the influence of the longitudinal compressive stress state due to the axial restraint conditions provided by the connections of the beams to other structural members. The presented parametric study aims to check the influence of some important variable studies, namely: torsional reinforcement ratio, compressive concrete strength and axial restraint level. From the results of this parametric study, nonlinear regression analyses are performed and some design charts are proposed. Such charts allow to correct the resistance torque of RC beams (rectangular sections with small height to width ratios) to account for the favorable influence of the axial restraint.

Implementation of Adaptive Impedance Controller using Fuzzy Inference (퍼지추론을 이용한 적응 임피던스 제어기의 구현)

  • Lim, Yong-Taek;Kim, Seung-Woo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.9
    • /
    • pp.423-429
    • /
    • 2001
  • This paper proposes adaptive impedance control algorithm using fuzzy inference when robot contacts with its environments. The characteristics of the adaptive impedance controller is to adapt with parametric uncertainty and nonlinear conditions. The control algorithm is to join impedance controller with fuzzy inference engine. The proposed control method overcomes the problem of impedance controller using gain-tuning algorithm of fuzzy inference engine. We implemented an experimental set-up consisting of environment-generated one-link robot system and DSP system for controller development. We apply the adaptive fuzzy impedance controller to one-link root system, and it shows the good performance on regulating the interactive force in case of contacting with arbitrary environment.

  • PDF

Fault Analysis of IPM type BLDC Motor Using Nonlinear Modeling of Stator Inter Turn Faults (고정자 절연파괴 비선형 모델링을 이용한 매입형 영구자석 전동기의 고장분석)

  • Kim, Kyung-Tae;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.531-537
    • /
    • 2011
  • This paper proposes a finite element method (FEM)-based model of an interior permanent magnet (IPM) type BLDC motor having stator inter-turn faults. For more realistic simulation studies, the magnetic non-linearity is also considered in proposed model. And the simulation data are verified through experiment. By integrating the developed model with a current-controlled voltage source inverter (CCVSI) model, the characteristics of an inter-turn fault operated by six-switched inverter are investigated considering the speed control. And the circulating current, which is induced by magnetic linkage flux originated from PM, was analyzed from the view point of distortion of air-gap magnetic flux distribution caused deterioration of their torque.

A Comparative Analysis of Test Methods of Measuring d- and q-Axes Inductances for Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기의 인덕턴스 측정법 비교 분석)

  • Kim, Seung-Joo;Kim, Cherl-Jin;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.923-928
    • /
    • 2009
  • The performance analysis and robust control of the interior permanent magnet synchronous motor(IPMSM) greatly depend on accurate value of its parameters. To achieve the high performance of torque control, it is necessary to consider exact inductance values because the inductances are nonlinear parameters of operating the IPMSM. Therefore many different methods have been performed for analysis of the methodology for the exact measurement of synchronous inductances. None of them is considered standard, and accuracy levels of all these methods are also not consistent. Among these experimental methods, the DC current decay test and the vector current control test are ideal for a laboratory environment. In this paper, these two test methods are compared by applying inductances to the IPMSM. The paper analyzes the measured inductances of the two methods and their differences with inductances obtained from the finite element method(FEM).

A Novel Region Decision Method with Mesh Adaptive Direct Search Applied to Optimal FEA-Based Design of Interior PM Generator

  • Lee, Dongsu;Son, Byung Kwan;Kim, Jong-Wook;Jung, Sang-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1549-1557
    • /
    • 2018
  • Optimizing the design of large-scale electric machines based on nonlinear finite element analysis (FEA) requires longer computation time than other applications of FEA, mainly due to the huge size of the machines. This paper addresses a new region decision method (RDM) with mesh adaptive direct search (MADS) for the optimal design of wind generators in order to reduce the computation time. The validity of the proposed algorithm is evaluated using Rastrigin and Goldstein-Price benchmark function. Moreover, the algorithm is employed for the optimal design of a 5.6MW interior permanent magnet synchronous generator to minimize the torque ripple. Additionally, mechanical stress analysis as well as electromagnetic field analysis have been implemented to prevent breakdown caused by large centrifugal forces of the modified design.

A Novel Stator Design of Synchronous Reluctance Motor by Loss & Efficiency Evaluations Related to Slot Numbers using Coupled Preisach Model & FEM (프라이자흐 모델이 결합된 유한요소법을 이용한 슬롯수 관련 손실, 효율 평가 수행에 따른 집중권선 동기형 릴럭턴스전동기의 고정자 설계)

  • Park Seong-June;Lee Mi-Jeong;Lee Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.917-919
    • /
    • 2004
  • This paper deals with the stator design solution of a synchronous reluctance motor (SynRM) with various slot number by loss & torque evaluations related to the slot open, teeth width using coupled Preisach modeling & FEM. The coupled Finite Elements Analysis (FEA) & Preisach model have been used to evaluate the nonlinear solution. Comparisons are given with characteristics of a SynRM according to the stator winding, slot number, slot open, teeth width variation, respectively

  • PDF