• 제목/요약/키워드: Nonlinear target tracking system

검색결과 37건 처리시간 0.028초

확장 강인 칼만 필터를 이용한 접근 탄도 미사일 추적 시스템 설계 (Design of Incoming Ballistic Missile Tracking Systems Using Extended Robust Kalman Filter)

  • 이현석;나원상;진승희;윤태성;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.188-188
    • /
    • 2000
  • The most important problem in target tracking can be said to be modeling the tracking system correctly. Although the simple linear dynamic equation for this model has used until now, the satisfactory performance could not be obtained owing to uncertainties of the real systems in the case of designing the filters baged on the dynamic equations. In this paper, we propose the extended robust Kalman filter (ERKF) which can be applied to the real target tracking system with the parameter uncertainties. A nonlinear dynamic equation with parameter uncertainties is used to express the uncertain system model mathematically, and a measurement equation is represented by a nonlinear equation to show data from the radar in a Cartesian coordinate frame. To solve the robust nonlinear filtering problem, we derive the extended robust Kalman filter equation using the Krein space approach and sum quadratic constraint. We show the proposed filter has better performance than the existing extended Kalman filter (EKF) via 3-dimensional target tracking example.

  • PDF

VEGA 기반 FBFE를 이용한 표적 추적 시스템 설계 (The Design of Target Tracking System Using FBFE based on VEGA)

  • 이범직;주영훈;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.126-130
    • /
    • 2001
  • In this paper, we propose the design methodology of target tracking system using fuzzy basis function expansion (FBFE) based on virus evolutionary genetic algorithm(VEGA). In general, the objective of target tracking is to estimate the future trajectory of the target based on the past position of the target obtained from the sensor. In the conventional and mathematical nonlinear filtering method such as extended Kalman filter (EKF), the performance of the system may be deteriorated in highly nonlinear situation. To resolve these problems of nonlinear filtering technique, by appling artificial intelligent technique to the tracking control of moving targets, we combine the advantages of both traditional and intelligent control technique. In the proposed method, after composing training datum from the parameters of extended Kalman filter, by combining FBFE, which has the strong ability for the approximation, with VEGA, which prevent GA from converging prematurely in the case of lack of genetic diversity of population, and by identifying the parameters and rule numbers of fuzzy basis function simultaneously, we can reduce the tracking error of EKF. Finally, the proposed method is applied to three dimensional tracking problem, and the simulation results shows that the tracking performance is improved by the proposed method.

  • PDF

TS 퍼지 모델 동정을 이용한 표적 추적 시스템 설계 (The Design of Target Tracking System Using the Identification of TS Fuzzy Model)

  • 이범직;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.1958-1960
    • /
    • 2001
  • In this paper, we propose the design methodology of target tracking system using the identification of TS fuzzy model based on genetic algorithm(GA) and RLS algorithm. In general, the objective of target tracking is to estimate the future trajectory of the target based on the past position of the target obtained from the sensor. In the conventional and mathematical nonlinear filtering method such as extended Kalman filter(EKF), the performance of the system may be deteriorated in highly nonlinear situation. In this paper, to resolve these problems of nonlinear filtering technique, the error of EKF by nonlinearity is compensated by identifying TS fuzzy model. In the proposed method, after composing training datum from the parameters of EKF, by identifying the premise and consequent parameters and the rule numbers of TS fuzzy model using GA, and by tuning finely the consequent parameters of TS fuzzy model using recursive least square(RLS) algorithm, the error of EKF is compensated. Finally, the proposed method is applied to three dimensional tracking problem, and the simulation results shows that the tracking performance is improved by the proposed method.

  • PDF

VEGA 기반 FBFE을 이용한 표적 추적 시스템 설계 (The Design of Target Tracking System Using FBFE Based on VEGA)

  • 이범직;주영훈;박진배
    • 한국지능시스템학회논문지
    • /
    • 제11권4호
    • /
    • pp.359-365
    • /
    • 2001
  • 본 논문에서는 바이러스-진화 유전 알고리즘에 기반한 퍼지 기저 함수 확장을 이용한 표적 추적 시스템의 설계 방법을 제안한다. 일반적으로 표적 추적의 목적은 센서로부터 얻어진 표적의 과거 위치에 기반하여, 미래에 대한 표적의 궤적을 추정하는 것이다. 확장 칼만 필터와 같은 전통적이고 수학적인 비선형 필터링 기법에서 강한 비선형성은 시스템의 성능을 저하시킬 수 있다. 이러한 비선형 필터링 기법의 장점을 결합한다. 제안된 방법에서, 확장 칼만 필터의 파라미터로 학습 데이터를 구성하고, 강한 근사화 능력을 가지는 퍼지 기저 함수에 유전 알고리즘의 유전적 다양성 상실로 이한 조기 수렴을 방지하는 바이러스-진화 유전 알고리즘을 결합하여, 파라미터와 규칙 수를 동시에 동정시킴으로써 확장 칼만 필터의 오차를 보정한다. 마지막으로, 제안된 방법은 3차원 상의 모의 실험을 통해 그 성능이 입증된다.

  • PDF

FCM 클러스터링 기반 비선형 기동표적의 외란분석 알고리즘 (External Noise Analysis Algorithm based on FCM Clustering for Nonlinear Maneuvering Target)

  • 손현승;박진배;주영훈
    • 전기학회논문지
    • /
    • 제60권12호
    • /
    • pp.2346-2351
    • /
    • 2011
  • This paper presents the intelligent external noise analysis method for nonlinear maneuvering target. After recognizing maneuvering pattern of the target by the proposed method, we track the state of the target. The external noise can be divided into mere noise and acceleration using only the measurement. divided noise passes through the filtering step and acceleration is punched into dynamic model to compensate expected states. The acceleration is the most deterministic factor to the maneuvering. By dividing, approximating, and compensating the acceleration, we can reduce the tracking error effectively. We use the fuzzy c-means (FCM) clustering as the method to divide external noise. FCM can separate the acceleration from the noise without criteria. It makes the criteria with the data made by measurement at every sampling time. So it can show the adaptive tracking result. The proposed method proceeds the tracking target simultaneously with the learning process. Thus it can apply to the online system. The proposed method shows the remarkable tracking result on the linear and nonlinear maneuvering. Finally, some examples are provided to show the feasibility of the proposed algorithm.

방위각 정보만을 이용한 비선형 표적추적필터 (Nonlinear Bearing Only Target Tracking Filter)

  • 윤장호
    • 항공우주시스템공학회지
    • /
    • 제10권1호
    • /
    • pp.8-14
    • /
    • 2016
  • The optimal estimation of a bearing only target tracking problem be achieved through the solution of the Fokker-Planck equation and the Bayesian update. Recently, a nonlinear filtering algorithm using a direct quadrature method of moments in which the associated Fokker-Planck equation can be propagated efficiently and accurately was proposed. Although this approach has demonstrated its promising in the field of nonlinear filtering in several examples, the "degeneracy" phenomenon, similar to that which exists in a typical particle filter, occasionally appears because only the weights are updated in the modified Bayesian rule in this algorithm. Therefore, in this paper to enhance the performance, a more stable measurement update process based upon the update equation in the Extended Kalman filters and a more accurate initialization and re-sampling strategy for weight and abscissas are proposed. Simulations are used to show the effectiveness of the proposed filter and the obtained results are promising.

글린트잡음을 갖는 비선형 시스템에 대한 하이브리드 필터 설계 (Hybrid Filter Design for a Nonlinear System with Glint Noise)

  • 곽기석;윤태성;박진배;신종구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.26-29
    • /
    • 2001
  • In a target tracking problem the radar glint noise has non-Gaussian heavy-tailed distribution and will seriously affect the target tracking performance. In most nonlinear situations an Extended Robust Kalman Filter(ERKF) can yield acceptable performance as long as the noises are white Gaussian. However, an Extended Robust $H_{\infty}$ Filter (ERHF) can yield acceptable performance when the noises are Laplacian. In this paper, we use the Interacting Multiple Model(IMM) estimator for the problem of target tracking with glint noise. In the IMM method, two filters(ERKF and ERHF) are used in parallel to estimate the state. Computer simulations of a real target tracking shows that hybrid filter used the IMM algorithm has superior performance than a single type filter.

  • PDF

차량 충돌 방지 시스템을 위한 선형 순환 표적 추정기 설계 (Design of Linear Recursive Target State Estimator for Collision Avoidance System)

  • 한슬기;나원상;황익호;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1740-1741
    • /
    • 2011
  • This paper proposes a new linear recursive target state estimator for automotive collision warning system. The target motion is modeled in Cartesian coordinate system while the radar measurements such as range, line-of-sight angle and range rate are obtained in polar coordinate system. To solve the problem by nonlinear relation between these two coordinate system, a practical linear filter design scheme employing the predicted line-of-sight Cartesian coordinate system (PLCCS) is proposed. Especially, PLCCS can effectively incorporate range rate measurements into target tracking system. It is known that the utilization of range rate measurements enables the improvement of target tracking performance. Moreover, PLCCS based target tracking system is implemented by linear recursive filter structure and hence is more suitable scheme for the development of reliable collision warning system. The performance of the proposed method is demonstrated by computer simulations.

  • PDF

접근 탄도미사일 추적시스템을 위한 좌표변환 확장강인칼만필터 설계 (Design of a Coordinate-Transformation Extended Robust Kalman Filter for Incoming Ballistic Missile Tracking Systems)

  • 신종구;이태훈;윤태성;최윤호;박진배
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권1호
    • /
    • pp.22-30
    • /
    • 2003
  • A Coordinate-Transformation Extended Robust Kalman Filter (CERKF) designed in the Krein space is proposed, and then applied to a nonlinear incoming ballistic missile tracking system with parameter uncertainties. First, the Extended Robust Kalman filter (ERKF) is proposed to handle the nonlinearity of measurement equation which occurs whenever the polar coordinate system is transformed into the Cartesian coordinate system. Moreover, linearization error inevitably occurs and deteriorates the tracking performance, which is considerably reduced by the proposed CERKF. Through the simulation results, we show that the proposed CERKF, which uses the measurement coordinate system, has less RMS error than the previous ERKF which is designed in the Krein space using the Cartesian system. We also verify that the robustness and the stability of the proposed filter are guaranteed in two radars: the phased way radar and the scanning radar

영상 항법 시스템을 위한 표적 추적 필터의 구성 (Target Tracking Filter Design For the Image Navigation System)

  • 박영철;홍기정;이쾌희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 A
    • /
    • pp.445-448
    • /
    • 1992
  • In this paper, we contructed extended Kalman filter for the image navigation systems. The conventional extended Kalman filter methode are simulated for nonlinear measurement systems. In addition, we designed a maneuvering target tracking filter using Singer's model technique and input estimation technique by Chan. Simulation results show that Chan's input estimation technique has performed better than Singer's technique.

  • PDF