• Title/Summary/Keyword: Nonlinear system identification

Search Result 394, Processing Time 0.022 seconds

Prediction of Chaotic Time Series Using Fuzzy Identification (퍼지 식별을 이용한 카오스 시계열 데이터 예측)

  • Ko, Jae-Ho;Bang, Sung-Yun;Do, Byung-Jo;Bae, Young-Chul;Yim, Hwa-Yeoung
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.627-629
    • /
    • 1997
  • In this paper, fuzzy logic system equipped with the back-propagation training algorithm as identifiers for nonlinear dynamic systems is described. To improve its performance, Jacob's delta-bar -delta rule is adapted in adjusting stepsize ${\alpha}$, and only y and ${\alpha}$ updating algorithm is suggested. In identifying and predicting the chaotic time series, suggested method is better than Li-Xin Wang's method,[1]

  • PDF

Application of structural health monitoring in civil infrastructure

  • Feng, M.Q.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.469-482
    • /
    • 2009
  • The emerging sensor-based structural health monitoring (SHM) technology has a potential for cost-effective maintenance of aging civil infrastructure systems. The author proposes to integrate continuous and global monitoring using on-structure sensors with targeted local non-destructive evaluation (NDE). Significant technical challenges arise, however, from the lack of cost-effective sensors for monitoring spatially large structures, as well as reliable methods for interpreting sensor data into structural health conditions. This paper reviews recent efforts and advances made in addressing these challenges, with example sensor hardware and health monitoring software developed in the author's research center. The hardware includes a novel fiber optic accelerometer, a vision-based displacement sensor, a distributed strain sensor, and a microwave imaging NDE device. The health monitoring software includes a number of system identification methods such as the neural networks, extended Kalman filter, and nonlinear damping identificaiton based on structural dynamic response measurement. These methods have been experimentally validated through seismic shaking table tests of a realistic bridge model and tested in a number of instrumented bridges and buildings.

Neuro-Fuzzy GMDH Model and Its Application to Forecasting of Mobile Communication (뉴로 - 퍼지 GMDH 모델 및 이의 이동통신 예측문제에의 응용)

  • Hwang, Heung-Suk
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.28-32
    • /
    • 2003
  • In this paper, the fuzzy group method data handling-type(GMDH) neural networks and their application to the forecasting of mobile communication system are described. At present, GMDH family of modeling algorithms discovers the structure of empirical models and it gives only the way to get the most accurate identification and demand forecasts in case of noised and short input sampling. In distinction to neural networks, the results are explicit mathematical models, obtained in a relative short time. In this paper, an adaptive learning network is proposed as a kind of neuro-fuzzy GMDH. The proposed method can be reinterpreted as a multi-stage fuzzy decision rule which is called as the neuro-fuzzy GMDH. The GMDH-type neural networks have several advantages compared with conventional multi-layered GMDH models. Therefore, many types of nonlinear systems can be automatically modeled by using the neuro-fuzzy GMDH. The computer program is developed and successful applications are shown in the field of estimating problem of mobile communication with the number of factors considered.

The Identification of Multi-Fuzzy Model by means of HCM and Genetic Algorithms (클러스터링 기법과 유전자 알고리즘에 의한 다중 퍼지 모델으 동정)

  • Park, Byoun-Jun;Lee, Su-Gu;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3007-3009
    • /
    • 2000
  • In this paper, we design a Multi-Fuzzy model by means of clustering method and genetic algorithms for a nonlinear system. In order to determine structure of the proposed Multi-Fuzzy model. HCM clustering method is used. The parameters of membership function of the Multi-Fuzzy are identified by genetic algorithms. We use simplified inference and linear inference as inference method of the proposed Multi-Fuzzy model and the standard least square method for estimating consequence parameters of the Multi-Fuzzy. Finally, we use some of numerical data to evaluate the proposed Multi-Fuzzy model and discuss about the usefulness.

  • PDF

Control Of A Bounded-Input Plant Using Neural Network (신경망을 이용한 입력제한 플랜트의 제어)

  • Kim, Dong-Hee;Lee, Si-Il;Kim, Sung-Sik;Ryoo, Dong-Wan;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2693-2695
    • /
    • 2000
  • Generally, neural networks can be used efficiently for the identification and control of nonlinear dynamical system, then it always needs to learn in order that the output values is closed to desired values. But, if plant input to control is limited to certain bounded values, former learning rules has the another problem. This paper demonstrates algorithm to control the bounded-input plant using neural network controller.

  • PDF

Design of Fuzzy-Neural Networks Structure using HCM and Optimization Algorithm (HCM 및 최적 알고리즘을 이용한 퍼지-뉴럴네트워크구조의 설계)

  • Yoon, Ki-Chang;Park, Byoung-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.654-656
    • /
    • 1998
  • This paper presents an optimal identification method of nonlinear and complex system that is based on fuzzy-neural network(FNN). The FNN used simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. And we use a HCM Algorithm to find initial parameters of membership function. And then to obtain optimal parameters, we use the genetic algorithm. Genetic algorithm is a random search algorithm which can find the global optimum without converging to local optimum. The parameters such as membership functions, learning rates and momentum coefficients are easily adjusted using the genetic algorithms. Also, the performance index with weighted value is introduced to achieve a meaningful balance between approximation and generalization abilities of the model. To evaluate the performance of the FNN, we use the time series data for 9as furnace and the sewage treatment process.

  • PDF

FPGA-based ARX-Laguerre PIO fault diagnosis in robot manipulator

  • Piltan, Farzin;Kim, Jong-Myon
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.99-112
    • /
    • 2018
  • The main contribution of this work is the design of a field programmable gate array (FPGA) based ARX-Laguerre proportional-integral observation (PIO) system for fault detection and identification (FDI) in a multi-input, multi-output (MIMO) nonlinear uncertain dynamical robot manipulators. An ARX-Laguerre method was used in this study to dynamic modeling the robot manipulator in the presence of uncertainty and disturbance. To address the challenges of robustness, fault detection, isolation, and estimation the proposed FPGA-based PI observer was applied to the ARX-Laguerre robot model. The effectiveness and accuracy of FPGA based ARX-Laguerre PIO was tested by first three degrees of the freedom PUMA robot manipulator, yielding 6.3%, 10.73%, and 4.23%, average performance improvement for three types of faults (e.g., actuator fault, sensor faults, and composite fault), respectively.

The Study of Neural Networks Using Orthogonal Function System (직교함수를 사용한 신경회로망에 대한 연구)

  • 권성훈;최용준;이정훈;손동설;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.214-217
    • /
    • 1999
  • In this paper we proposed a heterogeneous hidden layer consisting of both sigmoid functions and RBFs(Radial Basis Function) in multi-layered neural networks. Focusing on the orthogonal relationship between the sigmoid function and its derivative, a derived RBF that is a derivative of the sigmoid function is used as the RBF in the neural network. so the proposed neural network is called ONN's feasibility Neural Network). Identification results using a nonlinear. function confirm both the ONN's feasibility and characteristics by comparing with those obtained using a conventional neural network which has sigmoid function or RBF in hidden layer.

  • PDF

Vibration Control of Moving Structures by Neural Network (신경회로망을 이용한 구조물의 운동 중 진동의 제어에 관한 연구)

  • Lee, Sin-Young;Jeong, Heon-Sul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.138-148
    • /
    • 1996
  • In moving structures such as robots and feeders of production lines, vibrations may not be ignored. Recently it becomes a big problem to control the vibration in a motion because moving structures are in higher speed, larger size and lighter weight. In this study a nonlinear system was model- led and identified by using neural networks and the vibration in motions was controlled actively by using a neural network controller. To investigate vilidity of this method, an experimental apparatus was made and tested. The model was composed of a DC servomotor, a carrier and a flexible plate. Its motion was measured by a gap sensor and an encoder. Trapezoidal, cycloid and trapecloid type trajectories were used in this exper- riment. Computer simulations and experiments weredone for each trajectory.

  • PDF

Robust Real-time Control of Autonomous Mobile Robot Based on Ultrasonic and Infrared sensors (초음파 및 적외선 센서 기반 자율 이동 로봇의 견실한 실시간 제어)

  • Nguyen, Van-Quyet;Han, Sung-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.145-155
    • /
    • 2010
  • This paper presents a new approach to obstacle avoidance for mobile robot in unknown or partially unknown environments. The method combines two navigation subsystems: low level and high level. The low level subsystem takes part in the control of linear, angular velocities using a multivariable PI controller, and the nonlinear position control. The high level subsystem uses ultrasonic and IR sensors to detect the unknown obstacle include static and dynamic obstacle. This approach provides both obstacle avoidance and target-following behaviors and uses only the local information for decision making for the next action. Also, we propose a new algorithm for the identification and solution of the local minima situation during the robot's traversal using the set of fuzzy rules. The system has been successfully demonstrated by simulations and experiments.