• Title/Summary/Keyword: Nonlinear sliding mode

Search Result 432, Processing Time 0.024 seconds

Integral Sliding Mode Control for Robot Manipulators (로봇 매니퓰레이터를 위한 적분 슬라이딩 모드 제어)

  • Yoo, Dong-Sang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1266-1269
    • /
    • 2008
  • We propose an integral sliding mode control for robot manipulators guaranteeing that sliding motion exists starting from an initial time. Also, we prove the asymptotic stability for robot manipulators using three important properties in the robot dynamics: skew-symmetry, positive-definiteness, and boundedness of robot parameter matrices. From illustrative examples, we show that the proposed method effectively controls for robot manipulators.

An Adaptive Fuzzy Sliding Mode Controller for Robot Manipulators

  • Seo, Sam-Jun;Park, Gwi-Tae;Kim, Dongsik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.162.1-162
    • /
    • 2001
  • In this paper, the adaptive fuzzy system is used as an adaptive approximator for robot nonlinear dynamic. A theoretical justification for the adaptive approximator is proving that if the representive point(RP or switching function) and its derivative in sliding mode control are used as the inputs of the adaptive fuzzy system, the adaptive fuzzy system can approximate robot nonlinear dynamics in the neighborhood of the switching surface. Thus the fuzzy controller design is greatly simplified and at the same time, the fuzzy control rule can be obtained easily by the reaching condition. Based on this, a new method for designing an adaptive fuzzy control system based on sliding mode is proposed for the trajectory tracking control of a robot with unknown nonlinear dynamics.

  • PDF

A study on a multi-input time control of multi-joint manipulator using sliding mode (슬라이딩 모드를 이용한 다관절 매니퓰레이터의 다입력 실시간 제어에 관한 연구)

  • 이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.652-657
    • /
    • 1992
  • This paper presents to accomplish successfully a multi-input real time control by applying control hierarchy for sliding mode of multi-joint manipulators whose nonlinear terms are regarded as disturbances. We- could simplify the dynamic equations of a manipulator and servo system, which are composed of linear elements and nonlinear elements, by assuming that nonlinear terms, which are Inertia term, gravity force term, Coriolis force term and centrifugal force term, are external disturbance. By simplifying that equation, we could easily obtain a control input which satisfy sliding mode of multi-input system. We proposed a new control input algorithm in order to decrease chattering by changing control input according as effect of disturbance if a control response become within allowance error range. In this experiments, we used DSP(Digital Signal Processor) controller to suppress chattering by time delay of calculation and to carry out real time control.

  • PDF

Nonlinear Sliding Mode Control of an Axial Electromagnetic Levitation System by Attractive Force (흡인력을 이용한 자기 부상계의 비선형 슬라이딩 모드 제어)

  • 이강원;고유석;송창섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.165-171
    • /
    • 1998
  • An axial electromagnetic levitation system using attractive force is a highly nonlinear system due to the nonlinearity of materials, variable air gap and flux density. To control the levitating system with large air gap, a conventional PID control based on the linear model is not satisfactory to obtain the desired performance and the position tracking control of the sinusoidal motion by simulation results. Thus, sliding mode control(SMC) based on the input-output linearization is suggested and evaluated by simulation and experimental approaches. Usefulness of the SMC to this system is conformed experimentally. If the expected variation of added mass can be included in the gain conditions and the model, the position control performance of the electromagnetic levitation system with large air gap will be improved with robustness.

  • PDF

Speed characteristic comparison of PI controller and SLMC in SRM drives (SRM 드라이브에서 PI 제어기와 SLMC의 속도 특성 비교)

  • Kim Jin-young;Choi Jae-dong;Ahn Jae-Hwang;Oh Seung-Up;Ju Hyung-Jun;Seung Se-jin
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.34-37
    • /
    • 2001
  • In this paper the comparison of conventional PI control and nonlinear sliding mode control is presented for Switched Reluctance Motor(SRM). SRM drives require a nonlinear controller for high dynamic Performance but the high nonlinearity makes a poor performance in conventional PI control. However SRMs with sliding mode control achieve a robust performance for speed control. In this paper nonlinear sliding mode controller is suggested for high performance speed. State equation and modeling are proposed. And we present the speed comparison of PI control and SLMC.

  • PDF

Design of Robust, Optimal Controller using Sliding Mode (슬라이딩 모드를 이용한 견실 최적 제어기 설계)

  • Byun, Ji-Young;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.580-583
    • /
    • 2003
  • The general time optimal control law provides the optimal solution for a minimum time control problem. But in most real systems with disturbances and model uncertainties, the time optimal control law leads to chattering effect. This chattering effect can cause the system to be unstable. Therefore, we propose a robust optimal control algorithm for the nonlinear second order systems with model uncertainty. The proposed algorithm is combined with bang-bang control and sliding mode control. Thus the proposed algorithm has two state space regions to implement to control algorithm. In each region, the appropriate linear or nonlinear feedback control law is used satisfying the dynamic system equations. Simulation results show the superiority of the proposed controller in comparison with pure time optimal control(bang-bang control).

  • PDF

A Novel Nonlinear Robust Guidance Law Design Based On SDRE Technique

  • Moosapour, Seyyed Sajjad;Alizadeh, Ghasem;Khanmohammadi, Sohrab;Moosapour, Seyyed Hamzeh
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.369-376
    • /
    • 2012
  • A nonlinear robust guidance law is designed for missiles against a maneuvering target by incorporating sliding-mode and optimal control theories based on the state dependent Riccati equation (SDRE) to achieve robustness against target accelerations. The guidance law is derived based on three-dimensional nonlinear engagement kinematics and its robustness against disturbances is proved by the second method of Lyapunov. A new switching surface is considered in the sliding-mode control design. The proposed guidance law requires the maximum value of the target maneuver, and therefore opposed to the conventional augmented proportional navigation guidance (APNG) law, complete information about the target maneuver is not necessary, and hence it is simple to implement in practical applications. Considering different types of target maneuvers, several scenario simulations are performed. Simulation results confirm that the proposed guidance law has much better robustness, faster convergence, and smaller final time and control effort in comparison to the sliding-mode guidance (SMG) and APNG laws.

Estimation of Hydrodynamic Coefficients for an AUV Using Nonlinear Observers (비선형 관측기를 이용한 무인잠수정의 유체동역학 계수 추정)

  • Kim, Joon-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.24-34
    • /
    • 2006
  • Hydrodynamic coefficients strongly affect the dynamic performance of an AUV. Thus, it is important to know the true values of these coefficients, in order to accurately simulate the AUV's dynamic performance. Although these coefficients are generally obtained experimentally, such as through the PMM test, the measured values are not completely reliable because of experimental difficulties and errors. Another approach, by which these coefficients can be obtained, is the observer method, in which a model-based estimation algorithm estimates the coefficients. In this paper, the hydrodynamic coefficients are estimated using two nonlinear observers: a sliding mode observer and an extended Kalman filter. Their performances are evaluated in Matlab simulations, by comparing the estimated coefficients obtained from the two observer methods, with the experimental values as determined from the PMM test. A sliding mode controller is constructed for the diving and steering maneuver by using the estimated coefficients. It is demonstrated that the controller, applied with the estimated values, maintains the desired depth and path with sufficient accuracy.

Fuzzy Sliding Mode Control of Nonlinear System Based on T-S Fuzzy Dynamic Model (T-S 퍼지 모델을 이용한 비선형 시스템의 퍼지 슬라이딩 모드 제어)

  • Yoo, Byung-Kook;Yang, Keun-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.112-117
    • /
    • 2004
  • This paper suggests the design and analysis of the fuzzy sliding mode control for a nonlinear system using Takagi-Sugeno(T-S) fuzzy model. In this control scheme, identifying procedure that the input gain matrices in a T-S fuzzy model are manipulated into the same one is needed. The input disturbances generated in the identifying procedure are resolved by incorporating the disturbance treatment method of the conventional sliding mode control. The proposed control strategy can also treat the input disturbances that can not be linearized in the linearization procedure of T-S fuzzy modeling. Design example for the nonlinear system, an inverted pendulum on a cart, demonstrates the utility and validity of the proposed control scheme.

NONLINEAR MODEL-BASED CONTROL OF VANE TYPE CONTINUOUS VARIABLE VALVE TIMING SYSTEM

  • Son, M.;Lee, M.;Lee, K.;SunWoo, M.;Lee, S.;Lee, C.;Kim, W.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.555-562
    • /
    • 2007
  • The Variable Valve Timing(VVT) system for high performance is a key technology used in newly developed engines. The system realizes higher torque, better fuel economy, and lower emissions by allowing an additional degree of freedom in valve timing during engine operation. In this study, a model-based control method is proposed to enable a fast and precise VVT control system that is robust with respect to manufacturing tolerances and aging. The VVT system is modeled by a third-order nonlinear state equation intended to account for nonlinearities of the system. Based on the model, a controller is designed for position control of the VVT system. The sliding mode theory is applied to controller design to overcome model uncertainties and unknown disturbances. The experimental results suggest that the proposed sliding mode controller is capable of improving tracking performance. In addition, the sliding mode controller is robust to battery voltage disturbance.