• 제목/요약/키워드: Nonlinear roll

검색결과 115건 처리시간 0.024초

지자기를 이용한 위성체의 자세제어 (Magnetic attitude control of a satellite)

  • 엄광섭;박동조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.159-164
    • /
    • 1992
  • In this paper, the complex nonlinear dynamics of a satellite is obtained. And it is shown that several limitations exist when the magnetorquer is used as an active actuator to attitude control. Such limitations cause a delayed convergence of pitch and roll angle. The simulation results insure that the roll angle bias is dependent on the z axis spin rate. And a heuristic algorithm is applied to control the attitude libration through the computer simulations.

  • PDF

환상 압연 공정의 적응 제어 (An adaptive controller for ring rolling precesses)

  • 최형돈;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.534-539
    • /
    • 1986
  • This paper considers the ring rolling process contorl and treats the problem of controlling the pressure roll and conical roll motion which critically affects final quality of the rolled products. Since the process dynamics reveals nonlinear characteristics and parameter uncertainty, an adaptive control scheme was applied. The results show that this proposed adaptive control scheme can produce rolled rings of closer dimensional tolerances as compared with nonadaptive control system.

  • PDF

근해 대형 선망선의 횡동요 경감을 위한 최적의 빌지킬 설계 (An optimal bilge keel design to reduce the rolling of the offshore large purse seiner)

  • 김용직;강일권;박병수;함상준
    • 수산해양기술연구
    • /
    • 제50권2호
    • /
    • pp.147-153
    • /
    • 2014
  • The purpose of this paper is to examine the roll damping characteristics by bilge keels on the fishing vessel. Unlike other degree of freedom motions, roll motion is highly nonlinear. However the quantitative evaluation of roll damping combined with waves is very important for the fishing vessel. To reduce roll motion, roll motion stabilizers such as a bilge keel is used due to easy made and cheap cost rather than anti-rolling tank and fin-stabilizer. Authors paid attention to the shape of bilge keel and waves to grasp the roll damping for the fishing vessel and studied about the difference of tendencies of roll angle following the shapes of bilge keel. The model ship was the offshore large purse seiner and four types of bilge keel were used. The data from the experiments were provided and analyzed to investigate the rolling characteristics of the model ship being affected by the wave height, wave period and bilge keel shape. The results of the study showed that three types of the bilge keel have little effective, but only one has an effect on the roll damping. So bilge keel shape and its attachment method need to be a future study for the practical use in fishing vessel.

수중운동체의 롤 제어를 위한 Deep Deterministic Policy Gradient 기반 강화학습 (Reinforcement Learning based on Deep Deterministic Policy Gradient for Roll Control of Underwater Vehicle)

  • 김수용;황연걸;문성웅
    • 한국군사과학기술학회지
    • /
    • 제24권5호
    • /
    • pp.558-568
    • /
    • 2021
  • The existing underwater vehicle controller design is applied by linearizing the nonlinear dynamics model to a specific motion section. Since the linear controller has unstable control performance in a transient state, various studies have been conducted to overcome this problem. Recently, there have been studies to improve the control performance in the transient state by using reinforcement learning. Reinforcement learning can be largely divided into value-based reinforcement learning and policy-based reinforcement learning. In this paper, we propose the roll controller of underwater vehicle based on Deep Deterministic Policy Gradient(DDPG) that learns the control policy and can show stable control performance in various situations and environments. The performance of the proposed DDPG based roll controller was verified through simulation and compared with the existing PID and DQN with Normalized Advantage Functions based roll controllers.

Numerical investigation on the effect of baffles on liquid sloshing in 3D rectangular tanks based on nonlinear boundary element method

  • Guan, Yanmin;Yang, Caihong;Chen, Ping;Zhou, Li
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.399-413
    • /
    • 2020
  • The numerical simulation of liquid sloshing in the three-dimensional tanks under horizontal excitation and roll excitation was carried out, and the inhibition effect of different baffles on the sloshing phenomenon was investigated. The numerical calculations were carried out by the nonlinear Boundary Element Method (BEM) with Green's theorem based on the potential flow, which was conducted with the governing equation corresponding to the boundaries of each region. The validity of the method was verified by comparing with experimental values and published literatures. The horizontal baffle, the vertical baffle and the T-shaped baffle in the sloshing tanks were investigated respectively, and the baffles' position, dimension and the liquid depth were provided and discussed in detail. It is drawn that the baffle shape plays a non-negligible role in the tank sloshing. The vertical baffle is a more effective way to reduce the sloshing amplitude when the tank is under a horizontal harmonic excitation while the horizontal baffle is a more effective way when the tank is under a roll excitation. The amplitude of free surface elevation at right tank wall decreases with the increasing of the horizontal baffle length and the vertical baffle height. Although the T-shaped baffle has the best suppression effect on tank sloshing under horizontal excitation, it has limited suppression effect under roll excitation and will complicate the sloshing phenomenon when changing baffle height.

Study for the Safety of Ships' Nonlinear Rolling Motion in Beam Seas

  • Long, Zhan-Jun;Lee, Seung-Keon;Jeong, Jae-Hun;Lee, Sung-Jong
    • 한국항해항만학회지
    • /
    • 제33권9호
    • /
    • pp.629-634
    • /
    • 2009
  • Vessels stability problems need to resolve the nonlinear mathematical models of rolling motion. For nonlinear systems subjected to random excitations, there are very few special cases can obtain the exact solutions. In this paper, the specific differential equations of rolling motion for intact ship considering the restoring and damping moment have researched firstly. Then the partial stochastic linearization method is applied to study the response statistics of nonlinear ship rolling motion in beam seas. The ship rolling nonlinear stochastic differential equation is then solved approximately by keeping the equivalent damping coefficient as a parameter and nonlinear response of the ship is determined in the frequency domain by a linear analysis method finally.

Study for the Nonlinear Rolling Motion of Ships in Beam Seas

  • Long, Zhan-Jun;Lee, Seung-Keon;Jeong, Jae-Hun;Lee, Sung-Jong
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2009년도 추계학술대회
    • /
    • pp.239-240
    • /
    • 2009
  • Vessels stability problems need to resolve the nonlinear mathematical models of rolling motion. For nonlinear systems subjected to random excitations, there are very few special cases can obtain the exact solutions. In this paper, the specific differential equations of rolling motion for intact ship considering the restoring and damping moment have researched firstly. Then the partial stochastic linearization method is applied to study the response statistics of nonlinear ship rolling motion in beam seas. The ship rolling nonlinear stochastic differential equation is then solved approximately by keeping the equivalent damping coefficient as a parameter and nonlinear response of the ship is determined in the frequency domain by a linear analysis method finally.

  • PDF

열연 마무리 압연공정 압연롤 회전속도 설정 기술 개발 (Development of Technology for Setting Rolling Speed of Finishing Rolling Process in Hot Strip Mill)

  • 홍성철;이해영
    • 조명전기설비학회논문지
    • /
    • 제27권11호
    • /
    • pp.47-56
    • /
    • 2013
  • Rolling speed, roll gap, and cooling pattern in hot strip finishing mill process should be determined before inserting strip into roll. Such parameters are initially calculated by a mathematical set-up model. The technique to find adequate roll speed via a mathematical model has inherently limit because required working conditions are various and rolling process is nonlinear. To improve the accuracy of initial rolling speed for a finishing mill, this paper suggests a correction technology for initial rolling speed. The proposed method was implemented in hot strip mill process. As the results, the magnitude of width error in strip head-end part caused by excessive strip tension was decreased remarkably.

Large Amplitude Heave and Roll Simulations by the Chimera RANS Method

  • Kang, Chang-Ho
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 2001
  • An oscillating body motion with extremely large amplitude has been studied using the viscous flow solver. Time simulations of oscillating ship hull in prescribed heave and roll motions are presented using RANS method with FAM approach (Chen, 1995). For viscous flows, laminar flow and turbulent flow with $textsc{k}$-$\varepsilon$ model are considered and compared. The viscous flow solver of RANS method is performed together with a Chimera type of multi-block grid system to demonstrate the advantage of accurate and efficient zonal approach. In the present study, effects of viscosity and oscillation degree are discussed using Re=1000 and Re=1000000. Large motion of oscillating body shows clear vortex propagation that is not possible for inviscid flow to present.

  • PDF

탄소성해석을 이용한 금속 개스킷용 톱니형 코어 가공 하중 평가 (Estimation on Serrated Core Machining Load for Metal Gasket using Elasto-plastic Analysis)

  • 김태형;이성욱
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.145-151
    • /
    • 2012
  • In this study, finite element analysis is carried out to estimate horizontal forces needed for the required power calculation and vertical forces applied on the structural analysis model for the development of automatic serrated surface at metal gasket core machining system. By considering of elasto-plastic material characteristics, nonlinear contact analysis was conducted to compute these loads according to the change of roll reduction, frictional coefficient and core thickness. As the result, horizontal and vertical reaction force variations are found according to parameters and maximum reaction force is also confirmed to be most affected by roll reduction.