• 제목/요약/키워드: Nonlinear phenomena

검색결과 400건 처리시간 0.03초

혼돈 이론을 이용한 뇌파 분석에 대한 기초 연구 (Application of Chaotic Analysis to Electroencephalography : Preliminary Study)

  • 박해정;박광석;권준수
    • 생물정신의학
    • /
    • 제2권2호
    • /
    • pp.257-265
    • /
    • 1995
  • 선형적이고 정적인 뇌파 분석의 한계를 극복하고자 비선형적이고 동적인 접근방식인 혼돈이론을 이용하여 정신분열병환자 16명, 양극성 정동장애 10명, 주요 우울증 6명 및 정상 대조군 12명을 대상으로 뇌파 분석을 시도하고, 객관적인 혼돈 연구의 도입에 있어서 고려되어야 할 문제점을 살펴보고자 하였다. 각 질환에서의 상관차원의 분포가 정상대조군보다 개인에 따른 차이가 크다는 것을 알 수 있었고, 대체적으로 측두엽 부위에서 상관차원이 크게 나타나는 경향이 있었다. 이러한 결과와 관련하여 대상환자군의 특성, 혼돈이론을 뇌파분석에 이용할 때의 주의점등에 대하여 토론하였다.

  • PDF

통계적 분석기법을 이용한 공정 운전 향상의 방법 (Process operation improvement methodology based on statistical data analysis)

  • Hwang, Dae-Hee;Ahn, Tae-Jin;Han, Chonghun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1516-1519
    • /
    • 1997
  • With disseminationof Distributed Control Systems(DCS), the huge amounts of process operation data could have been available and led to figure out process behaviors better on the statistical basis. Until now, the statistical modeling technology has been susally applied to process monitoring and fault diagnosis. however, it has been also thought that these process information, extracted from statistical analysis, might serve a great opportunity for process operation improvements and process improvements. This paper proposed a general methodolgy for process operation improvements including data analysis, backing up the result of analysis based on the methodology, and the mapping physical physical phenomena to the Principal Components(PC) which is the most distinguished feature in the methodology form traditional statistical analyses. The application of the proposed methodology to the Balst Furnace(BF) process has been presented for details. The BF process is one of the complicated processes, due to the highly nonlinear and correlated behaviors, and so the analysis for the process based on the mathematical modeling has been very difficult. So the statisitical analysis has come forward as a alternative way for the useful analysis. Using the proposed methodology, we could interpret the complicated process, the BF, better than any other mathematical methods and find the direction for process operation improvement. The direction of process operationimprovement, in the BF case, is to increase the fludization and the permeability, while decreasing the effect of tapping operation. These guide directions, with those physical meanings, could save fuel cost and process operator's pressure for proper actions, the better set point changes, in addition to the assistance with the better knowledge of the process. Open to set point change, the BF has a variety of steady state modes. In usual almost chemical processes are under the same situation with the BF in the point of multimode steady states. The proposed methodology focused on the application to the multimode steady state process such as the BF, consequently can be applied to any chemical processes set point changing whether operator intervened or not.

  • PDF

Fluctuation in Plasma Nanofabrication

  • Shiratani, Masaharu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.96-96
    • /
    • 2016
  • Nanotechnology mostly employs nano-materials and nano-structures with distinctive properties based on their size, structure, and composition. It is quite difficult to produce nano-materials and nano-structures with identical sizes, structures, and compositions in large quantities, because of spatiotemporal fluctuation of production processes. In other words, fluctuation is the bottleneck in nanotechnology. We propose three strategies to suppress such fluctuations: employing 1) difference between linear and nonlinear phenomena, 2) difference in time constants, and 3) nucleation as a bottleneck phenomenon. We are also developing nano- and micro-scale guided assembly using plasmas as a plasma nanofabrication.1-5) We manipulate nano- and micro-objects using electrostatic, electromagnetic, ion drag, neutral drag, and optical forces. The accuracy of positioning the objects depends on fluctuation of position and energy of an object in plasmas. Here we evaluate such fluctuations and discuss the mechanism behind them. We conducted in-situ evaluation of local plasma potential fluctuation using tracking analysis of fine particles (=objects) in plasmas. Experiments were carried out with a radio frequency low-pressure plasma reactor, where we set two quartz windows at the top and bottom of the reactor. Ar plasmas were generated at 200 Pa by applying 13.56MHz, 450V peak-to-peak voltage. The injected fine particles were monodisperse methyl methacrylate-polymer spheres of $10{\mu}m$ in diameter. Fine particles were injected into the reactor and were suspended around the plasma/sheath boundary near the powered electrode. We observed binary collision of fine particles with a high-speed camera. The frame rate was 1000-10000 fps. Time evolution of their distance from the center of mass was measured by tracking analysis of the two particles. Kinetic energy during the collision was obtained from the result. Potential energy formed between the two particles was deduced by assuming the potential energy plus the kinetic energy is constant. The interaction potential is fluctuated during the collision. Maximum amplitude of the fluctuation is 25eV, and the average is 8eV. The fluctuation can be caused by neutral molecule collisions, ion collisions, and fluctuation of electrostatic force. Among theses possible causes, fluctuation of electrostatic force may be main one, because the fine particle has a large negative charge of -17000e and the corresponding electrostatic force is large compared to other forces.

  • PDF

CADMAS-SURF에 의한 단파의 수위 및 유속변화에 대한 예측정도의 검토 (Applicability of CADMAS-SURF Code for the Variation of Water Level and Velocity due to Bores)

  • 이광호;김창훈;황용태;김도삼
    • 한국해양공학회지
    • /
    • 제22권5호
    • /
    • pp.52-60
    • /
    • 2008
  • This study investigates the applicability of CADMAS-SURF (Super Roller Flume for Computer Aided Design of a MArtime Structure) code basal on the Navier-Stokes solver to predict bore phenomena. The time variation of ware levels and velocities due to the bore propagation were computed for the different bore strength conditions. In order to verify the numerical results by CADMAS-SURF, laboratory experiments were also performed, using the DPIV and LDV measuring system. The numerical results were compared to the experimental data and the analytical predictions by the NSC method basal on fully nonlinear shallow-water theory by the method of characteristics. It appears that the CADMAS-SURF slightly overestimated the water-surface level measured by the laboratory experiments and its discrepancy becomes prominent as the bore strength increases. The predicted propagation speed for a bore was also slaver than that by the experiment and NSC method. However, the temporal variations in velocities were in relatively good agreement with the experimental data for all cases, except for overshooting and undershooting in the front face of a bore, which may be derived from the numerical instability. Further, CADMAS-SURF successfully simulated the decrease in the water level and velocity caused by the effects of negative waves reflected from the upstream end wall.

철근콘크리트 기둥의 3차원 비선형 유한요소 해석 (Nonlinear Finite Element Analysis of Reinforced Concrete Columns)

  • 권민호;장준호
    • 콘크리트학회논문집
    • /
    • 제16권3호
    • /
    • pp.397-406
    • /
    • 2004
  • 최근 개발된 3차원 콘크리트 구성모델을 사용하여 구속을 받는 콘크리트와 철근콘크리트 기둥의 해석을 수행하였다. 편차응력과 체적응력 간의 상호작용이 포함되어있고, 비례 및 비례하지 않는 하중을 받는 경우에도 적용 가능한 아탄성 직교 콘크리트 구성모델을 변형률 제어 모델로 전산화하였다. 유한요소 전산화 과정에서 손상균열모델을 사용하였고, 균열은 주변형률 방향에 따라 회전 가능한 것으로 모델링하였다. 콘크리트 구성모델을 구속을 받는 콘크리트 공시체의 실험결과 그리고 캘리포니아 대학(샌디에고)에서 수행된 3개의 철근콘크리트 기둥의 실험결과와 비교하였다. 이를 통하여 비선형 콘크리트 구성모델에 근거한 유한요소해석 결과가 실험에서 관찰된 주요한 특징들을 잘 예측하고 있음을 보여주었다.

Finite element modeling of high Deborah number planar contraction flows with rational function interpolation of the Leonov model

  • Youngdon Kwon;Kim, See-Jo;Kim, Seki
    • Korea-Australia Rheology Journal
    • /
    • 제15권3호
    • /
    • pp.131-150
    • /
    • 2003
  • A new numerical algorithm of finite element methods is presented to solve high Deborah number flow problems with geometric singularities. The steady inertialess planar 4 : 1 contraction flow is chosen for its test. As a viscoelastic constitutive equation, we have applied the globally stable (dissipative and Hadamard stable) Leonov model that can also properly accommodate important nonlinear viscoelastic phenomena. The streamline upwinding method with discrete elastic-viscous stress splitting is incorporated. New interpolation functions classified as rational interpolation, an alternative formalism to enhance numerical convergence at high Deborah number, are implemented not for the whole set of finite elements but for a few elements attached to the entrance comer, where stress singularity seems to exist. The rational interpolation scheme contains one arbitrary parameter b that controls the singular behavior of the rational functions, and its value is specified to yield the best stabilization effect. The new interpolation method raises the limit of Deborah number by 2∼5 times. Therefore on average, we can obtain convergent solution up to the Deborah number of 200 for which the comer vortex size reaches 1.6 times of the half width of the upstream reservoir. Examining spatial violation of the positive definiteness of the elastic strain tensor, we conjecture that the stabilization effect results from the peculiar behavior of rational functions identified as steep gradient on one domain boundary and linear slope on the other. Whereas the rational interpolation of both elastic strain and velocity distorts solutions significantly, it is shown that the variation of solutions incurred by rational interpolation only of the elastic strain is almost negligible. It is also verified that the rational interpolation deteriorates speed of convergence with respect to mesh refinement.

A study of birefringence, residual stress and final shrinkage for precision injection molded parts

  • Yang, Sang-Sik;Kwon, Tai-Hun
    • Korea-Australia Rheology Journal
    • /
    • 제19권4호
    • /
    • pp.191-199
    • /
    • 2007
  • Precision injection molding process is of great importance since precision optical products such as CD, DVD and various lens are manufactured by those process. In such products, birefringence affects the optical performance while residual stress that determines the geometric precision level. Therefore, it is needed to study residual stress and birefringence that affect deformation and optical quality, respectively in precision optical product. In the present study, we tried to predict residual stress, final shrinkage and birefringence in injection molded parts in a systematic way, and compared numerical results with the corresponding experimental data. Residual stress and birefringence can be divided into two parts, namely flow induced and thermally induced portions. Flow induced birefringence is dominant during the flow, whereas thermally induced stress is much higher than flow induced one when amorphous polymer undergoes rapid cooling across the glass transition region. A numerical system that is able to predict birefringence, residual stress and final shrinkage in injection molding process has been developed using hybrid finite element-difference method for a general three dimensional thin part geometry. The present modeling attempts to integrate the analysis of the entire process consistently by assuming polymeric materials as nonlinear viscoelastic fluids above a no-flow temperature and as linear viscoelastic solids below the no-flow temperature, while calculating residual stress, shrinkage and birefringence accordingly. Thus, for flow induced ones, the Leonov model and stress-optical law are adopted, while the linear viscoelastic model, photoviscoelastic model and free volume theory taking into account the density relaxation phenomena are employed to predict thermally induced ones. Special cares are taken of the modeling of the lateral boundary condition which can consider product geometry, histories of pressure and residual stress. Deformations at and after ejection have been considered using thin shell viscoelastic finite element method. There were good correspondences between numerical results and experimental data if final shrinkage, residual stress and birefringence were compared.

동조질량감쇠기를 이용한 해양구조물의 진동제어 (Vibration Control of Offshore Platform using Tuned Mass Damper)

  • 김주명;이규원
    • 한국강구조학회 논문집
    • /
    • 제16권1호통권68호
    • /
    • pp.73-79
    • /
    • 2004
  • 파랑에 의해 발생하는 해양구조물의 진동을 억제하기 위해 동조질량감쇠기(Tuned Mass Damper, TMD)를 적용하여 그 효과를 분석하였다. 해양구조물의 운동방정식에 포함된 파랑-구조물 상호작용에 의한 비선형성을 선형화한 경우의 오차와 TMD설계시 선형방정식을 사용한 경우 발생할 수 있는 현상을 분석하였다. TMD설치 전후의 제진효과 분석에서는 주기를 달리한 규칙파에 의한 성능과, 유의파가 서로다른 불규칙파에 의한 성능을 동시에 분석하였다. 규칙파에 의한 해석결과 입사파의 주기가 구조물의 첫 번째 고유주기와 근접한 경우 제진효과가 뛰어났으며 주기가 더 짧거나 더 긴 경우는 제진효과가 감소하였다. 불규칙파에 의한 해석결과는 유의파가 상대적으로 작아 구조물의 고유주기 성분이 많이 포함된 파랑에 대한 제진효과가 뛰어나고, 유의파가 커서 구조물의 고유주기 보다 큰 성분이 많이 포함된 파랑에서는 제진효과를 발견할 수 없었다. 따라서, 해양구조물에 TMD를 적용할 때는 파고가 작은 상시 내습 파랑에 대한 제진효과를 볼 수 있으며 이는 상시 진동제어를 통한 피로수명 확보에 큰 도움이 될 것으로 예상된다.

폴리아닐린/탄소나노튜브 폴리머 액츄에이터의 모델링, 시뮬레이션 및 제어 (Modeling, Simulation, and Control of a Polyaniline/Carbon-Nanotube Polymer Actuator)

  • 손기원;이병주;김선정;김인영;김선일
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권3호
    • /
    • pp.348-354
    • /
    • 2007
  • Polymer actuators, which are also called as smart materials, change their shapes when electrical, chemical, thermal, or magnetic energy is applied to them and are useful in wide variety of applications such as microelectromechanical systems (MEMS), machine components, and artificial muscles. For this study, Polyaniline/carbon-nanotube polymer actuator that is one of electroactive polymer actuators was prepared. Since the nonlinear phenomena of hysteresis and a step response are essential considerations for practical use of polymer actuators, we have investigated the movement of the Polyaniline/carbon-nanotube polymer actuator and have developed an integrated model that can be used for simulating and predicting the hysteresis and a step response during actuation. The Preisach hysteresis model, one of the most popular phenomenological models of hysteresis, were used for describing the hysteretic behavior of Polyaniline/carbon-nanotube polymer actuator while the ARX method, one of system identification techniques, were used for modeling a step response. In this paper, we first expain details in preparation of the Polyaniline/carbon-nanotube polymer then present the mathematical description of our model, the extraction of the parameters, simulation results from the model, and finally a comparison with measured data.

실측자료를 이용한 Agglomerated Film Model의 용융탄산염 연료전지 산소전극 성능모사 (Modified Agglomerated Film Model Applied to a Molten Carbonate Fuel Cell Cathode)

  • 임준혁;김태근
    • 한국환경과학회지
    • /
    • 제5권5호
    • /
    • pp.593-603
    • /
    • 1996
  • 용응탄산염 연료전지의 산소전극성능모사를 위한 이중기공구조의 filmed agglomerate model을 연구하였다. 이 모델에서는 전극과 전해질 계면의 물리, 화학적인 현상 및 전극반응기구를 고려하여 정상상태 에서 전극의 특성을 조업조건에 따라 표시할 수있다. 기존의 연구에서 기하학적인 구조를 가정하여 전극반응면적을 이론적으로 계산한 반면에 본 연구에서는 porosimeter를 이용한 기공도와 기공구조 분포 측정자료를 이용한 방법을 제시하였다. 계산결과는 전극재질, 기체조성, 전극두께, agglomerate 기공도 및 전해질 막의 두께에 따른 영향을 전류밀도와 과전압의 관계로 표시하였다. 또한 전극 재질로 perovskite (La0.8Sr0.2CoO3)와 NiO를 사용하여 실제전지를 이용한 성능을 측정하여 이론치와 비교하였다. 두전 극의 반쪽전지 실험에서 유사한 성능을 나타내었다. Perovskite 전극은 전극 기공도 65%, agglomerate 기공도 12% 그리고 전극두께 1.5~2mm에서 최적의 결과를 보여주었다. NiO전극의 경우 peroxide 반응기구에서 superoxide 반응기구의 계산결과보다 실험치와 일치하는 좋은 결과를 보였다.

  • PDF