• Title/Summary/Keyword: Nonlinear phenomena

Search Result 397, Processing Time 0.024 seconds

Stress Analysis for Differential Drying Shrinkage of Concrete (콘크리트의 부등건조수축으로 인한 응력의 해석)

  • 김진근;김효범
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.102-112
    • /
    • 1994
  • The drying shrinkage of concrete has a close relation to the water movement. Since the diffusion process of water in concrete is strongly dependent on the temperature and the pore humidity, the process is highly nonlinear phenomena. This study consists of two parts. The first is the development of a finite element program which is capable of simulating the rnoisture distri- ,bution in concrete, and the other is the estimation of the differential drying shrinkage and stress considering creep by using the modified elastic modulus due to inner temperature change and maturity. It is shown that the analytical results of this study are in good agreement with experlimental data in the literatures, and results calculated by BP-KX model. The internal stress caused by moisture distribution which was resulted from the diffusion process, was calculated :quantitatively. The tensile stress which occured in the drying outer zone mostly exceeded the tensile strength of concrete, and necessarily would result in crack formation.

Dynamic loading tests and analytical modeling for high-damping rubber bearings

  • Kyeonghoon Park;Taiji Mazda;Yukihide Kajita
    • Earthquakes and Structures
    • /
    • v.25 no.3
    • /
    • pp.161-175
    • /
    • 2023
  • High-damping rubber bearings (HDRB) are commonly used as seismic isolation devices to protect civil engineering structures from earthquakes. However, the nonlinear hysteresis characteristics of the HDRB, such as their dependence on material properties and hardening phenomena, make predicting their behavior during earthquakes difficult. This study proposes a hysteretic model that can accurately predicts the behavior of shear deformation considering the nonlinearity when designing the seismic isolation structures using HDR bearings. To model the hysteretic characteristics of the HDR, dynamic loading tests were performed by applying sinusoidal and random waves on scaled-down specimens. The test results show that the nonlinear characteristics of the HDR strongly correlate with the shear strain experienced in the past. Furthermore, when shear deformation occurred above a certain level, the hardening phenomenon, wherein the stiffness increased rapidly, was confirmed. Based on the experimental results, the dynamic characteristics of the HDR, equivalent stiffness, equivalent damping ratio, and strain energy were quantitatively evaluated and analyzed. In this study, an improved bilinear HDR model that can reproduce the dependence on shear deformation and hardening phenomena was developed. Additionally, by proposing an objective parameter-setting procedure based on the experimental results, the model was devised such that similar parameters could be set by anyone. Further, an actual dynamic analysis could be performed by modeling with minimal parameters. The proposed model corresponded with the experimental results and successfully reproduced the mechanical characteristics evaluated from experimental results within an error margin of 10%.

Evolution Strategies Based Particle Filters for Nonlinear State Estimation

  • Uosaki, Katsuji;Kimura, Yuuya;Hatanaka, Toshiharu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.559-564
    • /
    • 2003
  • Recently, particle filters have attracted attentions for nonlinear state estimation. They evaluate a posterior probability distribution of the state variable based on observations in simulation using so-called importance sampling. However, degeneracy phenomena in the importance weights deteriorate the filter performance. A new filter, Evolution Strategies Based Particle Filter, is proposed to circumvent this difficulty and to improve the performance. Numerical simulation results illustrate the applicability of the proposed idea.

  • PDF

Terminal Sliding Mode Control of Nonlinear Systems Using Self-Recurrent Wavelet Neural Network (자기 회귀 웨이블릿 신경망을 이용한 비선형 시스템의 터미널 슬라이딩 모드 제어)

  • Lee, Sin-Ho;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1033-1039
    • /
    • 2007
  • In this paper, we design a terminal sliding mode controller based on self-recurrent wavelet neural network (SRWNN) for the second-order nonlinear systems with model uncertainties. The terminal sliding mode control (TSMC) method can drive the tracking errors to zero within finite time in comparison with the classical sliding mode control (CSMC) method. In addition, the TSMC method has advantages such as the improved performance, robustness, reliability and precision. We employ the SRWNN to approximate model uncertainties. The weights of SRWNN are trained by adaptation laws induced from Lyapunov stability theorem. Finally, we carry out simulations for Duffing system and the wing rock phenomena to illustrate the effectiveness of the proposed control scheme.

The Instability Behavior of Shallow Sinusoidal Arches(1) : Classification of Static Buckling According to Shape Characteristics (얕은 정현형 아치의 불안정 거동에 관한 연구(1) : 형상특성에 따른 정적좌굴의 분류)

  • 김승덕;박지윤;권택진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.407-415
    • /
    • 1999
  • There are two kinds of instability phenomena for shell-type structures which are snap-through and bifurcation buckling. These are very sensitive according to the shape characteristics including rise-span ratio and especially shape initial imperfection. In this study, the equilibrium path of shallow sinusoidal arches supported by hinges at both ends is investigated to grasp the instability behavior of shell-type structures with initial imperfection. The Galerkin method is used to get the nonlinear discretized equation of governing differential equation considering geometric nonlinearity of arches and the perturbation method is also used to transform the nonlinear equation to incremental form.

  • PDF

Nonlinear Acoustic-Pressure Responses of H2/Air Counterflow Diffusion Flames (수소/공기 대향류 확산화염의 비선형 음향파 응답특성에 관한 연구)

  • Kim, Hong-Jip;Chung, Suk-Ho;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1158-1164
    • /
    • 2003
  • Steady-state structure and acoustic-pressure responses of $H_2$/Air counterflow diffusion flames are studied numerically with a detailed chemistry in view of acoustic instability. The Rayleigh criterion is adopted to judge acoustic amplification or attenuation from flame responses. Steady-state flame structures are first investigated and flame responses to various acoustic-pressure oscillations are numerically calculated in near-equilibrium and near-extinction regimes. The acoustic responses of $H_2$/Air flame show that the responses in near-extinction regime always contribute to acoustic amplification regardless of acoustic-oscillation frequency Flames near extinction condition are sensitive to pressure perturbation and thereby peculiar nonlinear responses occur, which could be a possible mechanism in generating the threshold phenomena observed in combustion chamber of propulsion systems.

Nonlinear Color-Metallicity Relations of Globular Clusters: an Observational Approach

  • Kim, Hak-Sub;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.50.1-50.1
    • /
    • 2015
  • The origin of globular cluster (GC) color bimodality, which is one of the salient phenomena observed in most large galaxies, has not yet been fully resolved. The phenomenon has conventionally been interpreted as a bimodal metallicity distribution based on an assumption of linear GC color-metallicity relations (CMRs). Recent studies however suggest that nonlinear GC CMRs can cause a bimodal color distribution even from a single-peaked metallicity spread. Using photometric and spectroscopic data on GCs in NGC 5128 (Cen A) and NGC 4594 (Sombrero), we investigate the nonlinearity of GC CMRs and compare the observed GC CMRs with the predictions of stellar population simulation models. Our careful selection of old GCs effectively reduces the scatter and reveals the nonlinear nature of the GC CMRs for various colors. The overall shape of the observed CMRs agrees well with that of the modeled CMRs, while offsets are present for some colors. We discuss the implications of our results in terms of the GC color bimodality and GC formation in NGC 5128 and NGC 4594.

  • PDF

Robustness of Learning Systems Subject to Noise:Case study in forecasting chaos

  • Kim, Steven H.;Lee, Churl-Min;Oh, Heung-Sik
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.181-184
    • /
    • 1997
  • Practical applications of learning systems usually involve complex domains exhibiting nonlinear behavior and dilution by noise. Consequently, an intelligent system must be able to adapt to nonlinear processes as well as probabilistic phenomena. An important class of application for a knowledge based systems in prediction: forecasting the future trajectory of a process as well as the consequences of any decision made by e system. This paper examines the robustness of data mining tools under varying levels of noise while predicting nonlinear processes in the form of chaotic behavior. The evaluated models include the perceptron neural network using backpropagation (BPN), the recurrent neural network (RNN) and case based reasoning (CBR). The concepts are crystallized through a case study in predicting a Henon process in the presence of various patterns of noise.

  • PDF

Nonlinear Response Phenomena of a Randomly Excited Vibration Absorber System (불규칙적으로 가진되는 동흡진기계의 비선형응답현상)

  • Cho, Duk-Sang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.2
    • /
    • pp.141-147
    • /
    • 2000
  • The nonlinear response statistics of an autoparameteric system under broad-band random excitation is investigated. The specific system examined is a vibration absorber system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equations is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian closure method the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The jump phenomenon was found by Gaussian closure method under random excitation.

  • PDF

Compressive Creep Behavior of Fruits

  • Kim, M.S.;Park, J.M.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1329-1339
    • /
    • 1993
  • Creep tests were performed to determine the nonlinear viscoelastic properties of apples and pears with the creep experiment apparatus designed in this study. Compressive creep characteristics of fruits were tested at two kinds of storage conditions, four periods of storage and three levels of initial stress. Ten replications were made at each treatment combination. The creep behavior of the fruits could be well described by the nonlinear viscoelastic model as a function of initial stress and time. however, for each level of initial stress applied, the compressive behavior of the samples was satisfactorily represented by Burger's model. For all sample fruits, the longer the samples was stored, the higher the instantaneous elastic strain was observed, and the creep progressed at a high rate. These phenomena were even more remarkable on the fruit stored at the normal temperature storage rather than at the low temperature storage.

  • PDF