• 제목/요약/키워드: Nonlinear optimal design

검색결과 595건 처리시간 0.027초

수직다관절 로봇의 중력보상장치 최적설계 (Optimal Design of Passive Gravity Compensation System for Articulated Robots)

  • 박진균;이재영;김상현;김성락
    • 대한기계학회논문집A
    • /
    • 제36권1호
    • /
    • pp.103-108
    • /
    • 2012
  • 본 논문에서는 수직다관절 로봇에 걸리는 중력 토크를 보상하는데 주로 사용되는 스프링 중력보상장치의 최적설계에 대하여 기술하였다. 스트레스, 좌굴, 피로 조건과 같은 스프링 설계에 대한 다수의 비선형 제약 조건을 반영하면서, 동시에 계산 시간을 줄이기 위하여, SQP(Sequential Quadratic Programming)를 적용하였다. 또한 정수해를 가져야 하는 설계 변수를 반영하기 위하여, Continuous Relaxation 방법을 사용하였다. 시뮬레이션을 통하여 설계된 중력보상 장치가 주요 작업 영역에서 추가의 무게 증가 없이 중력 보상 성능이 효과적으로 높아짐을 입증하였다.

A numerical study on optimal FTMD parameters considering soil-structure interaction effects

  • Etedali, Sadegh;Seifi, Mohammad;Akbari, Morteza
    • Geomechanics and Engineering
    • /
    • 제16권5호
    • /
    • pp.527-538
    • /
    • 2018
  • The study on the performance of the nonlinear friction tuned mass dampers (FTMD) for the mitigation of the seismic responses of the structures is a topic that still inspires the efforts of researchers. The present paper aims to carry out a numerical study on the optimum tuning of TMD and FTMD parameters using a multi-objective particle swarm optimization (MOPSO) algorithm including soil-structure interaction (SSI) effects for seismic applications. Considering a 3-story structure, the performances of the optimized TMD and FTMD are compared with the uncontrolled structure for three types of soils and the fixed base state. The simulation results indicate that, unlike TMDs, optimum tuning of FTMD parameters for a large preselected mass ratio may not provide a best and optimum design. For low mass ratios, optimal selection of friction coefficient has an important key to enhance the performance of FTMDs. Consequently, a free parameter search of all FTMD parameters provides a better performance in comparison with considering a preselected mass ratio for FTMD in the optimum design stage of the FTMD. Furthermore, the SSI significant effects on the optimum design of the TMD and FTMD. The simulation results also show that the FTMD provides a better performance in reducing the maximum top floor displacement and acceleration of the building in different soil types. Moreover, the performance of the TMD and FTMD decrease with increasing soil softness, so that ignoring the SSI effects in the design process may give an incorrect and unrealistic estimation of their performance.

Optimal Design for A Heteropolar Magnetic Bearing Considering Nonlinearities

  • Kim, Chaesil;Lee, Jaewhoan;Park, Jong-Kweon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권1호
    • /
    • pp.13-19
    • /
    • 2002
  • Although the design of magnetic bearing needs a systematic optimization due to several design variables, constraints, geometric limitations, nonlinearities, and so on, the present designs for magnetic bearings have been conducted in the linear region of the characteristics for magnetic materials by trial and error considering design constraints. This article, therefore, provides the possibility of a genetic algorithm(GA) based optimization with two dimensional nonlinear finite element magnetic field analysis for the design of a radial heteropolar magnetic bearing. The magnetic bearing design by GA based optimization makes good agreements with that by a commercial optimization software DOT using the sensitivity analysis.

비선형이 고려된 이극성 자기베어링의 최적설계 (Optimal Design for a Heteropolar Magnetic Bearing Considering Nonlinearities)

  • 김재실;이재환;박종권
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.53-58
    • /
    • 1999
  • Although the design of magnetic bearing needs a systematic optimization du e to several design variables, constraints, geometric limitations, nonlinearities, and so on, the present for magnetic bearings have been conducted in the linear region of the characteristics for magnetic by trial and error considering design constraints. This article, therefore, provides the possibility of a genetic algorithm(GA) based optimization with two dimensional-nonlinear finite element magnetic field analysis for design of a radial heteropolar magnetic bearing. The magnetic bearing design by GA based optimization makes good agreements with that by a commercial optimization software DOT using the sensitivity analysis.

  • PDF

Neural Network Active Control of Structures with Earthquake Excitation

  • Cho Hyun Cheol;Fadali M. Sami;Saiidi M. Saiid;Lee Kwon Soon
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권2호
    • /
    • pp.202-210
    • /
    • 2005
  • This paper presents a new neural network control for nonlinear bridge systems with earthquake excitation. We design multi-layer neural network controllers with a single hidden layer. The selection of an optimal number of neurons in the hidden layer is an important design step for control performance. To select an optimal number of hidden neurons, we progressively add one hidden neuron and observe the change in a performance measure given by the weighted sum of the system error and the control force. The number of hidden neurons which minimizes the performance measure is selected for implementation. A neural network was trained for mitigating vibrations of bridge systems caused by El Centro earthquake. We applied the proposed control approach to a single-degree-of-freedom (SDOF) and a two-degree-of-freedom (TDOF) bridge system. We assessed the robustness of the control system using randomly generated earthquake excitations which were not used in training the neural network. Our results show that the neural network controller drastically mitigates the effect of the disturbance.

A FUZZY LOGIC CONTROLLER DESIGN FOR VEHICLE ABS WITH A ON-LINE OPTIMIZED TARGET WHEEL SLIP RATIO

  • Yu, F.;Feng, J.-Z.;Li, J.
    • International Journal of Automotive Technology
    • /
    • 제3권4호
    • /
    • pp.165-170
    • /
    • 2002
  • For a vehicle Anti-lock Braking System (ABS), the control target is to maintain friction coefficients within maximum range to ensure minimum stopping distance and vehicle stability. But in order to achieve a directionally stable maneuver, tire side forces must be considered along with the braking friction. Focusing on combined braking and turning operation conditions, this paper presents a new control scheme for an ABS controller design, which calculates optimal target wheel slip ratio on-line based on vehicle dynamic states and prevailing road condition. A fuzzy logic approach is applied to maintain the optimal target slip ratio so that the best compromise between braking deceleration, stopping distance and direction stability performances can be obtained for the vehicle. The scheme is implemented using an 8-DOF nonlinear vehicle model and simulation tests were carried out in different conditions. The simulation results show that the proposed scheme is robust and effective. Compared with a fixed-slip ratio scheme, the stopping distance can be decreased with satisfactory directional control performance meanwhile.

열간사상압연기의 루퍼시스템의 ILQ 제어기 설계 (Design of an ILQ Looper Controller for Rot Strip Mills)

  • 김성배;황이철
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1680-1689
    • /
    • 2002
  • This paper studies on the design of a looper control system for hot strip mill finisher using ILQ(Inverse Linear Quadratic optimal control) control method. The loopers are placed between each rolling stands and looper control plays an important role in regulating strip tension. The strip tension is controlled by raising and lowering the looper and by changing the speed of main work rolls. Firstly, it is shown from a nonlinear dynamic simulation that the strip tension is more influenced by difference of rolling speed than that of the looper angle. Secondly, a servo controller of the looper is designed using ILQ control method of which the characteristics and algorithms are simply introduced. Finally, the performances of the ILQ servo controller are compared with those of the LQI servo controller from computer simulation. In result, it is shown that the proposed ILQ servo controller has the better performances and robustness far parameter perturbations and disturbances than those of LQI controller.

Seismic performance and optimal design of framed underground structures with lead-rubber bearings

  • Chen, Zhi-Yi;Zhao, Hu;Lou, Meng-Lin
    • Structural Engineering and Mechanics
    • /
    • 제58권2호
    • /
    • pp.259-276
    • /
    • 2016
  • Lead-rubber bearings (LRBs) have been used worldwide in seismic design of buildings and bridges owing to their stable mechanical properties and good isolation effect. We have investigated the effectiveness of LRBs in framed underground structures on controlling structural seismic responses. Nonlinear dynamic time history analyses were carried out on the well-documented Daikai Station, which collapsed during the 1995 Hyogoken-Nanbu earthquake. Influences of strength ratio (ratio of yield strength of LRBs to yield strength of central column) and shear modulus of rubber on structural seismic responses were studied. As a displacement-based passive energy dissipation device, LRBs reduce dynamic internal forces of framed underground structures and improve their seismic performance. An optimal range of strength ratios was proposed for the case presented. Within this range, LRBs can dissipate maximum input earthquake energy. The maximum shear and moment of the central column can achieve more than 50% reduction, whereas the maximum shear displacement of LRBs is acceptable.

하이브리드 퍼지제어기의 설계를 위한 최적 자동동조알고리즘 (Optimal Auto-tuning Algorithm for Design of a Hybrid Fuzzy Controller)

  • 김중영;이대근;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.501-503
    • /
    • 1999
  • In this paper, the design method of a hybrid fuzzy controller with an optimal auto-tuning method is proposed. The conventional PID controller becomes so sensitive to the control environments and the change of parameters that the efficiency of its utility for the complex and nonlinear plant has been questioned in transient state. In this paper, first, a hybrid fuzzy logic controller(HFLC) is proposed. The control input of the system in the HFLC is a convex combination by a fuzzy variable of the FLC's output in transient state and the PID's output in steady state. Second, a powerful auto-tuning algorithm is presented to automatically improve the Performance of controller, utilizing the improved complex method and the genetic algorithm. The algorithm estimates automatically the optimal values of scaling factors and PID coefficients. Controllers are applied to the plants with time-delay and the DC servo motor Computer simulations are conducted at the step input and the system performances are evaluated in the ITAE.

  • PDF

Optimal Controller for Near-Space Interceptor with Actuator Saturation

  • Fan, Guo-Long;Liang, Xiao-Geng;Hou, Zhen-Qian;Yang, Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권3호
    • /
    • pp.256-263
    • /
    • 2013
  • The saturation of the actuator impairs the response performance of the near space interceptor control system. A control system based on the properties of linear tracking system is designed for this problem. The properties are that the maximum value of the pseudo-Lyapunov function of the linear tracking control system do not present at the initial state but at the steady state, based on which the bounded stability problem is converted into linear tracking problem. The pseudo-Lyapunov function of the linear tracking system contain the input variables; the amplitude and frequency of the input variables affect the stability of the nonlinear control system. Designate expected closed-loop poles area for different input commands and obtain a controller which is function of input variables. The coupling between variables and linear matrices make the control system design problem non-convex. The non-convex problem is converted into a convex LMI according to the Shur complement lemma and iterative algorithm. Finally the simulation shows that the designed optimal control system is quick and accurate; the rationality of the presented design techniques is validated.