• Title/Summary/Keyword: Nonlinear optical chromophore

Search Result 23, Processing Time 0.016 seconds

Novel Y-Type Polyimide with Highly Enhanced Thermal Stability of Second Harmonic Generation

  • Lee, Ju-Yeon;Kim, Jin-Hyang;Rhee, Bum-Ku
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.234-237
    • /
    • 2007
  • 3,4-Bis-(3,4-dicarboxyphenylcarboxyethoxy)-4'-nitrostilbene dianhydride was prepared and reacted with 4,4'-(hexafluoroisopropylidene)dianiline to yield a novel Y-type polyimide containing the 3,4-dioxynitrostilbenyl group as an NLO-chromophore, which constituted part of the polymer backbone. The resulting polyimide was soluble in polar solvents such as acetone and N,N-dimethylformamide. The polymer exhibited good thermal stability up to $370^{\circ}C$ in the thermogravimetric analysis. The glass-transition temperature ($T_g$) obtained from the differential scanning calorimetry thermogram was near to $153^{\circ}C$. The second harmonic generation (SHG) coefficient ($d_{33}$) of the poled polymer film at the fundamental wavelength of $1064\;cm^{-1}$ was around $2.15\;{\times}\;10^{-8}\;esu$ (9.01 pm/V). The dipole alignment exhibited exceptionally high thermal stability even at a temperature $30^{\circ}C$ above the $T_g$, and there was no SHG decay below $180^{\circ}C$ because of the partial main chain character of the polymer structure.

Synthesis and Characterization of a New Photoconducting Poly(siloxane) Having Pendant Diphenylhydrazone for Photorefractive Applications

  • Lee, Sang-Ho;Jahng, Woong-Sang;Park, Ki-Hong;Kim, Nakjoong;Joo, Won-Jae;Park, Dong-Hoon
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.431-436
    • /
    • 2003
  • A new photoconducting polymer, diphenyl hydrazone-substituted polysiloxane, was successfully synthesized by the hydrosilylation method and characterized by FT-IR, $^1$H-NMR, and $^{29}$ Si-NMR spectroscopy. The glass transition temperature (T$_{g}$) of the polysiloxane having pendant diphenyl hydrazone was ca. 62 $^{\circ}C$, which enabled a component of a low-T$_{g}$ photorefractive material to be prepared without the addition of any plasticizers. This polysiloxane, with 1 wt% of $C_{60}$ dopant, showed a high photoconductivity (2.8 ${\times}$ 10$^{-12}$ S/cm at 70 V/${\mu}{\textrm}{m}$) at 633 nm, which is necessary for fast build-up of the space-charge field. A photorefractive composite was prepared by adding a nonlinear optical chromophore, 2-{3-[2-(dibutylamino)-1-ethenyl]-5,5-dimethyl-2-cyclohexenylidene} malononitrile, into the photoconducting polysiloxane together with $C_{60}$ . This composite shows a large orientation birefringence ($\Delta$n = 2.6 ${\times}$ 10$^{-3}$ at 50 V/${\mu}{\textrm}{m}$) and a high diffraction efficiency of 81 % at an electric field of 40 V /${\mu}{\textrm}{m}$.textrm}{m}$.EX>.

Syntheses, X-ray Structures and Second Harmonic Generation Efficiencies of MAP (Methyl (2,4-dinitrophenyl)-aminopropanoate) Analogues

  • Lee Joo-Hee;Kim Kimoon;Kim Jong-Hyun;Kim Jong-Jean
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.268-274
    • /
    • 1992
  • An attempt to improve the second harmonic generation (SHG) efficiency of MAP (methyl (2,4-dinitrophenyl)aminopropanoate) by modifying the substituents on the amino group of MAP is described. Several MAP analogues have been prepared using optically active amino acids alanine, phenylalanine and serine, and their SHG efficiencies measured. None of the MAP analogues exhibited SHG efficiencies as high as that of MAP. X-ray crystal structures of three MAP analogues have been determined. In the crystal structures of two of them, which were the derivatives of phenylalanine, two crystallographically-independent molecules existing in the asymmetric unit are aligned almost antiparallel. These structures are consistent with the very low SHG efficiencies of these compounds. On the other hand, the crystal structure of a serine derivative reveals substantial alignment of the dinitroaniline chromophore along the polar axis. However, the angle of 86.2° between the molecular charge tranfer axis and the polar axis of the crystal is still far away from the optimum value of 54.74° for the phase-matchable SHG. The structure is consistent with the SHG efficiency of this compound which is much higher than those of the phenylalanine derivatives but still lower than that of MAP. This study demonstrates the importance of the orientation of molecules in the crystal lattice in determining secod-order nonlinear optical properties of crystalline materials.