• Title/Summary/Keyword: Nonlinear mixed effect model

Search Result 21, Processing Time 0.022 seconds

Statistical analysis on the fluence factor of surveillance test data of Korean nuclear power plants

  • Lee, Gyeong-Geun;Kim, Min-Chul;Yoon, Ji-Hyun;Lee, Bong-Sang;Lim, Sangyeob;Kwon, Junhyun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.760-768
    • /
    • 2017
  • The transition temperature shift (TTS) of the reactor pressure vessel materials is an important factor that determines the lifetime of a nuclear power plant. The prediction of the TTS at the end of a plant's lifespan is calculated based on the equation of Regulatory Guide 1.99 revision 2 (RG1.99/2) from the US. The fluence factor in the equation was expressed as a power function, and the exponent value was determined by the early surveillance data in the US. Recently, an advanced approach to estimate the TTS was proposed in various countries for nuclear power plants, and Korea is considering the development of a new TTS model. In this study, the TTS trend of the Korean surveillance test results was analyzed using a nonlinear regression model and a mixed-effect model based on the power function. The nonlinear regression model yielded a similar exponent as the power function in the fluence compared with RG1.99/2. The mixed-effect model had a higher value of the exponent and showed superior goodness of fit compared with the nonlinear regression model. Compared with RG1.99/2 and RG1.99/3, the mixed-effect model provided a more accurate prediction of the TTS.

A Statistical Approach to the Pharmacokinetic Model (집단 약동학 모형에 대한 통계학적 고찰)

  • Lee, Eun-Kyung
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.3
    • /
    • pp.511-520
    • /
    • 2010
  • The Pharmacokinetic model is a complex nonlinear model with pharmacokinetic parameters that is some-times represented by a complex form of differential equations. A population pharmacokinetic model adds individual variability using the random effects to the pharmacokinetic model. It amounts to the nonlinear mixed effect model. This paper, reviews the population pharmacokinetic model from a statistical viewpoint; in addition, a population pharmacokinetic model is also applied to the real clinical data along with a review of the statistical meaning of this model.

Analysis of quantitative high throughput screening data using a robust method for nonlinear mixed effects models

  • Park, Chorong;Lee, Jongga;Lim, Changwon
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.6
    • /
    • pp.701-714
    • /
    • 2020
  • Quantitative high throughput screening (qHTS) assays are used to assess toxicity for many chemicals in a short period by collectively analyzing them at several concentrations. Data are routinely analyzed using nonlinear regression models; however, we propose a new method to analyze qHTS data using a nonlinear mixed effects model. qHTS data are generated by repeating the same experiment several times for each chemical; therefor, they can be viewed as if they are repeated measures data and hence analyzed using a nonlinear mixed effects model which accounts for both intra- and inter-individual variabilities. Furthermore, we apply a one-step approach incorporating robust estimation methods to estimate fixed effect parameters and the variance-covariance structure since outliers or influential observations are not uncommon in qHTS data. The toxicity of chemicals from a qHTS assay is classified based on the significance of a parameter related to the efficacy of the chemicals using the proposed method. We evaluate the performance of the proposed method in terms of power and false discovery rate using simulation studies comparing with one existing method. The proposed method is illustrated using a dataset obtained from the National Toxicology Program.

Significance of nonlinear permeability in the coupled-numerical analysis of tunnelling

  • Kim, Kang-Hyun;Kim, Ho-Jong;Jeong, Jae-Ho;Shin, Jong-Ho
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.103-109
    • /
    • 2020
  • The inflow rate is of interest in the design of underground structures such as tunnels and buried pipes below the groundwater table. Soil permeability governing the inflow rate significantly affects the hydro-geological behavior of soils but is difficult to estimate due to its wide range of distribution, nonlinearity and anisotropy. Volume changes induced by stress can cause nonlinear stress-strain behavior, resulting in corresponding permeability changes. In this paper, the nonlinearity and anisotropy of permeability are investigated by conducting Rowe cell tests, and a nonlinear permeability model considering anisotropy was proposed. Model modification and parameter evaluation for field application were also addressed. Significance of nonlinear permeability was illustrated by carrying out numerical analysis of a tunnel. It is highlighted that the effect of nonlinear permeability is significant in soils of which volume change is considerable, and particularly appears in the short-term flow behavior.

Estimation Methods for Population Pharmacokinetic Models using Stochastic Sampling Approach (확률적 표본추출 방법을 이용한 집단 약동학 모형의 추정과 검증에 관한 고찰)

  • Kim, Kwang-Hee;Yoon, Jeong-Hwa;Lee, Eun-Kyung
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.175-188
    • /
    • 2015
  • This study is about estimation methods for the population pharmacokinetic and pharmacodymic model. This is a nonlinear mixed effect model, and it is difficult to find estimates of parameters because of nonlinearity. In this study, we examined theoretical background of various estimation methods provided by NONMEM, which is the most widely used software in the pharmacometrics area. We focused on estimation methods using a stochastic sampling approach - IMP, IMPMAP, SAEM and BAYES. The SAEM method showed the best performance among methods, and IMPMAP and BAYES methods showed slightly less performance than SAEM. The major obstacle to a stochastic sampling approach is the running time to find solution. We propose new approach to find more precise initial values using an ITS method to shorten the running time.

A compressible finite element model for hyperelastic members under different modes of deformation

  • Manna, M.C.;Sheikh, A.H.;Bhattacharyya, R.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.227-245
    • /
    • 2006
  • The performance of a three dimensional non-linear finite element model for hyperelastic material considering the effect of compressibility is studied by analyzing rubber blocks under different modes of deformation. It includes simple tension, pure shear, simple shear, pure bending and a mixed mode combining compression, shear and bending. The compressibility of the hyperelastic material is represented in the strain energy function. The nonlinear formulation is based on updated Lagrangian (UL) technique. The displacement model is implemented with a twenty node brick element having u, ${\nu}$ and w as the degrees of freedom at each node. The results obtained by the present numerical model are compared with the analytical solutions available for the basic modes of deformation where the agreement between the results is found to be satisfactory. In this context some new results are generated for future references since the number of available results on the present problem is not sufficient enough.

Kernel Poisson Regression for Longitudinal Data

  • Shim, Joo-Yong;Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1353-1360
    • /
    • 2008
  • An estimating procedure is introduced for the nonlinear mixed-effect Poisson regression, for longitudinal study, where data from different subjects are independent whereas data from same subject are correlated. The proposed procedure provides the estimates of the mean function of the response variables, where the canonical parameter is related to the input vector in a nonlinear form. The generalized cross validation function is introduced to choose optimal hyper-parameters in the procedure. Experimental results are then presented, which indicate the performance of the proposed estimating procedure.

  • PDF

Nonlinear mixed models for characterization of growth trajectory of New Zealand rabbits raised in tropical climate

  • de Sousa, Vanusa Castro;Biagiotti, Daniel;Sarmento, Jose Lindenberg Rocha;Sena, Luciano Silva;Barroso, Priscila Alves;Barjud, Sued Felipe Lacerda;de Sousa Almeida, Marisa Karen;da Silva Santos, Natanael Pereira
    • Animal Bioscience
    • /
    • v.35 no.5
    • /
    • pp.648-658
    • /
    • 2022
  • Objective: The identification of nonlinear mixed models that describe the growth trajectory of New Zealand rabbits was performed based on weight records and carcass measures obtained using ultrasonography. Methods: Phenotypic records of body weight (BW) and loin eye area (LEA) were collected from 66 animals raised in a didactic-productive module of cuniculture located in the southern Piaui state, Brazil. The following nonlinear models were tested considering fixed parameters: Brody, Gompertz, Logistic, Richards, Meloun 1, modified Michaelis-Menten, Santana, and von Bertalanffy. The coefficient of determination (R2), mean squared error, percentage of convergence of each model (%C), mean absolute deviation of residuals, Akaike information criterion (AIC), and Bayesian information criterion (BIC) were used to determine the best model. The model that best described the growth trajectory for each trait was also used under the context of mixed models, considering two parameters that admit biological interpretation (A and k) with random effects. Results: The von Bertalanffy model was the best fitting model for BW according to the highest value of R2 (0.98) and lowest values of AIC (6,675.30) and BIC (6,691.90). For LEA, the Logistic model was the most appropriate due to the results of R2 (0.52), AIC (783.90), and BIC (798.40) obtained using this model. The absolute growth rates estimated using the von Bertalanffy and Logistic models for BW and LEA were 21.51g/d and 3.16 cm2, respectively. The relative growth rates at the inflection point were 0.028 for BW (von Bertalanffy) and 0.014 for LEA (Logistic). Conclusion: The von Bertalanffy and Logistic models with random effect at the asymptotic weight are recommended for analysis of ponderal and carcass growth trajectories in New Zealand rabbits. The inclusion of random effects in the asymptotic weight and maturity rate improves the quality of fit in comparison to fixed models.

Large deformation modeling of flexible manipulators to determine allowable load

  • Esfandiar, Habib;Korayem, Moharam H.;Haghpanahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.619-629
    • /
    • 2017
  • This paper focuses on the study of complete dynamic modeling and maximum dynamic load carrying capacity computation of N-flexible links and N-flexible joints mobile manipulator undergoing large deformation. Nonlinear dynamic analysis relies on the Timoshenko theory of beams. In order to model the system completely and precisely, structural and joint flexibility, nonlinear strain-displacement relationship, payload, and non-holonomic constraints will be considered to. A finite element solution method based on mixed method is applied to model the shear deformation. This procedure is considerably more involved than displacement based element and shear deformation can be readily included without inducing the shear locking in the element. Another goal of this paper is to present a computational procedure for determination of the maximum dynamic load of geometrically nonlinear manipulators with structural and joint flexibility. An effective measure named as Moment-Height Stability (MHS) measure is applied to consider the dynamic stability of a wheeled mobile manipulator. Simulations are performed for mobile base manipulator with two flexible links and joints. The results represent that dynamic stability constraint is sensitive when calculating the maximum carrying load. Furthermore, by changing the trajectory of end effector, allowable load also changes. The effect of torsional spring parameter on the joint deformation is investigated in a parametric sensitivity study. The findings show that, by the increase of torsional stiffness, the behavior of system approaches to a system with rigid joints and allowable load of robot is also enhanced. A comparison is also made between the results obtained from small and large deformation models. Fluctuation range in obtained figures for angular displacement of links and end effector path is bigger for large deformation model. Experimental results are also provided to validate the theoretical model and these have good agreement with the simulated results.

Model Validation Methods of Population Pharmacokinetic Models (집단 약동학 모형을 위한 모형 진단과 적합도 검정에 대한 고찰)

  • Lee, Eun-Kyung
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.1
    • /
    • pp.139-152
    • /
    • 2012
  • The result of the analysis of a population pharmacokinetic model can directly influence the decision of the dose level applied to the targeted patients. Therefore the validation procedure of the final model is very important in this area. This paper reviews the validation methods of population pharmacokinetic models from a statistical viewpoint. In addition, the whole procedure of the analysis of population pharmacokinetics, from the base model to the final model (that includes various validation procedures for the final model) is tested with real clinical data.