• 제목/요약/키워드: Nonlinear loads

검색결과 1,028건 처리시간 0.035초

An Enhanced Harmonic Voltage Compensator for General Loads in Stand-alone Distributed Generation Systems

  • Trinh, Quoc-Nam;Lee, Hong-Hee;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.1070-1079
    • /
    • 2013
  • This paper develops an enhanced harmonic voltage compensator which is implemented with the aid of two repetitive controllers (RCs) in order to improve the output voltage performance of stand-alone distributed generation (DG) systems. The proposed harmonic voltage compensator is able to maintain the DG output voltage sinusoidal regardless of the use of nonlinear and/or unbalanced loads in the load side. In addition, it can offer good steady-state performance under various types of loads and a very fast dynamic response under load variations to overcome the slow dynamic response issue of the traditional RC. The feasibility of the proposed control strategy is verified through simulations and experiments.

종동력을 받는 진동계의 케이오틱 거동 연구 (Chaotic response of a double pendulum subjected to follower force)

  • 이재영;장안배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.295-300
    • /
    • 1996
  • In this study, the dynamic instabilities of a nonlinear elastic system subjected to follower force are investigated. The two-degree-of-freedom double pendulum model with nonlinear geometry, cubic spring, and linear viscous damping is used for the study. The constant and periodic follower forces are considered. The chaotic nature of the system is identified using the standard methods, such as time histories, phase portraits, and Poincare maps, etc.. The responses are chaotic and unpredictable due to the sensitivity to initial conditions. The sensitivities to parameters, such as geometric initial imperfections, magnitude of follower force, and viscous damping, etc. is analysed. The strange attractors in Poincare map have the self-similar fractal geometry. Dynamic buckling loads are computed for various parameters, where the loads are changed drastically for the small change of parameters.

  • PDF

폭발하중을 받는 보강판 구조물의 간이 해석법에 대한 실용성 검토 (A Review on Practical Use of Simple Analysis Method based on SDOF Model for the Stiffened Plate Structures subjected to Blast Loads)

  • 김을년;하심식
    • 대한조선학회논문집
    • /
    • 제57권2호
    • /
    • pp.70-79
    • /
    • 2020
  • The offshore installation units may be subjected to various accidental loads such as collision from supply vessels, impact from dropped objects, blast load from gas explosion and thermal load from fire. This paper deals with the design and strength evaluation method of the stiffened plate structures in response to a blast load caused by a gas explosion accident. It is a comprehensive review of various items used in actual project such as the size and type of the explosive loads, general design procedure/concept and analysis method. The structural analyses using simple analysis methods based on SDOF model and nonlinear finite element analysis are applied to the particular FPSO project. Also validation studies on the design guidance given by simple analysis method based on SDOF model have also considered several items such as backpressure effects, material behavior and duration time of the overpressure. A good correlation between the prediction made by simple analysis method based on SDOF model and nonlinear finite element analysis can be generally obtained up to the elastic limit.

엑티브 필터 기능을 갖는 계통연계형 단상 태양광 발전시스템의 제안 (Proposal of the Grid-connected Single Phase PCS including the Function of Active Filter)

  • 장성재;서효룡;김경훈;박상수;박민원;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1077-1078
    • /
    • 2008
  • The growing number of nonlinear loads such as static power converters has posed a problem on the quality of electric power supply. The active filters (AF) have been rapidly expanding with the advancement of power electronics technology. The purpose of the active filters is to compensate current harmonics and/or current imbalance. The authors have studied and introduced the PV-AF system; the PV power system, which is used widely as a dispersed source, including the function of active filter to compensate the harmonics caused by nonlinear loads. The PV-AF system has merits not only to compensate harmonics caused by nonlinear loads but also to increase the utilization of PCS. This paper describes the grid-connected single phase PV-AF system and the PSCAD/EMTDC simulation results.

  • PDF

전류 고조파에 기인하는 변압기 손실 해석 (Power Loss Analysis of Transformer Caused By Current Harmonics)

  • 장승용;한상훈;최재호
    • 전력전자학회논문지
    • /
    • 제21권1호
    • /
    • pp.34-41
    • /
    • 2016
  • This study investigates transformer losses caused by current harmonics. Electrical transformers are designed to work under sinusoidal voltage and current waves at a rated frequency. Recently, various nonlinear loads, such as power electronic converters, are connected to a power system; these converters generate current harmonics. Current harmonics increase power loss in transformers, which results in several problems, including temperature increase of the transformer and insulation damage. These problems will eventually shorten the operational life of the transformer. In this study, different types of losses caused by current harmonics in three-phase transformers are studied under linear and nonlinear load conditions. Linear loads are simulated and experimented on using pure resistance load, whereas nonlinear loads are simulated and experimented on using a three-phase twelve-pulse thyristor full-bridge rectifier. The different types of losses in three-phase transformers are evaluated analytically through the experimental result and simulation in PSiM.

Voltage Distortion Suppression for Off-grid Inverters with an Improved Load Current Feedforward Control

  • Geng, Yiwen;Zhang, Xue;Li, Xiaoqiang;Wang, Kai;Yuan, Xibo
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.716-724
    • /
    • 2017
  • The output voltage of an off-grid inverter is influenced by load current, and the voltage harmonics especially the 5th and 7th are increased with nonlinear loads. In this paper, to attenuate the output voltage harmonics of off-grid inverters with nonlinear loads nearby, a load current feedforward is proposed. It is introduced to a voltage control loop based on the Positive and Negative Sequence Harmonic Regulator (PNSHR) compensation to modify the output impedance at selective frequencies. The parameters of the PNSHR are revised with the output impedance of the off-grid inverter, which minimizes the output impedance of the off-grid inverter. Experimental results verify the proposed method, showing that the output voltage harmonics caused by nonlinear loads can be effectively suppressed.

Distributed plasticity approach for the nonlinear structural assessment of offshore wind turbine

  • Tran, Thanh-Tuan;Hussan, Mosaruf;Kim, Dookie;Nguyen, Phu-Cuong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.743-754
    • /
    • 2020
  • This study provides an insight of the nonlinear behavior of the Offshore Wind Turbine (OWT) structure using the distributed plasticity approach. The fiber section beam-column element is applied to construct the finite element model. The accuracy of the proposed model is verified using linear analysis via the comparison of the dynamic characteristics. For collapse risk assessment of OWT, the nonlinear effects considering the earthquake Incident Angle (IA) have been evaluated first. Then, the Incremental Dynamic Analysis (IDA) has been executed using a set of 20 near-fault records. Lastly, fragility curves are developed to evaluate the vulnerability of structures for different limit states. Attained results justify the accuracy of the proposed approach for the structural response against the ground motions and other environmental loads. It indicates that effects of static wind and wave loads along with the earthquake loads should be considered during the risk assessment of the OWT structure.

Parameter identification for nonlinear behavior of RC bridge piers using sequential modified extended Kalman filter

  • Lee, Kyoung Jae;Yun, Chung Bang
    • Smart Structures and Systems
    • /
    • 제4권3호
    • /
    • pp.319-342
    • /
    • 2008
  • Identification of the nonlinear hysteretic behavior of a reinforced concrete (RC) bridge pier subjected to earthquake loads is carried out based on acceleration measurements of the earthquake motion and bridge responses. The modified Takeda model is used to describe the hysteretic behavior of the RC pier with a small number of parameters, in which the nonlinear behavior is described in logical forms rather than analytical expressions. Hence, the modified extended Kalman filter is employed to construct the state transition matrix using a finite difference scheme. The sequential modified extended Kalman filter algorithm is proposed to identify the unknown parameters and the state vector separately in two steps, so that the size of the problem for each identification procedure may be reduced and possible numerical problems may be avoided. Mode superposition with a modal sorting technique is also proposed to reduce the size of the identification problem for the nonlinear dynamic system with multi-degrees of freedom. Example analysis is carried out for a continuous bridge with a RC pier subjected to earthquake loads in the longitudinal and transverse directions.

Effect of Earthquake characteristics on seismic progressive collapse potential in steel moment resisting frame

  • Tavakoli, Hamid R.;Hasani, Amir H.
    • Earthquakes and Structures
    • /
    • 제12권5호
    • /
    • pp.529-541
    • /
    • 2017
  • According to the definition, progressive collapse could occur due to the initial partial failure of the structural members which by spreading to the adjacent members, could result in partial or overall collapse of the structure. Up to now, most researchers have investigated the progressive collapse due to explosion, fire or impact loads. But new research has shown that the seismic load could also be a factor for initiation of the progressive collapse. In this research, the progressive collapse capacity for the 5 and 15-story steel special moment resisting frames using push-down nonlinear static analysis, and nonlinear dynamic analysis under the gravity loads specified in the GSA Guidelines, were studied. After identifying the critical members, in order to investigate the seismic progressive collapse, the 5-story steel special moment resisting frame was analyzed by the nonlinear time history analysis under the effect of earthquakes with different characteristics. In order to account for the initial damage, one of the critical columns was weakened at the initiation of the earthquake or its Peak Ground Acceleration (PGA). The results of progressive collapse analyses showed that the potential of progressive collapse is considerably dependent upon location of the removed column and the number of stories, also the results of seismic progressive collapse showed that the dynamic response of column removal under the seismic load is completely dependent on earthquake characteristics like Arias intensity, PGA and earthquake frequency contents.

퍼지 알고리즘을 이용한 비선형 크레인 시스템의 진동방지 및 3차원 위치제어 (Anti-sway and 3D position Control of the Nonlinear Crane System using Fuzzy Algorithm)

  • 이태영;이상룡
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.193-202
    • /
    • 1999
  • Crane operation for transporting heavy loads causes swinging motion at the loads due to crane's acceleration and deceleration. This sway causes the suspension ropes to leave their grooves and leads to possibility of serious damages. So, this swing of the objects is a serious problem and the goal of crane system is transporting to a goal position as soon as possible without the oscillation of the rope. Generally crane is operated by expert's knowledge. Therefore, a satisfactory control method to supress object sway during transport is indispensible. The dynamic behavior of the crane shows nonlinear characteristics. when the length of the rope is changed the crane is time varying system and the design of anti-sway controller is very difficult. In this paper, the nonlinear dynamic model for the industrial overhead crane whose girder, trolley and hoister move simultaneously is derived. and the Fuzzy logic controller based on the expert experiments during acceleration, constant velocity, deceleration and stop position period is proposed to supress the swing motion and control the position of the crane. The performance of the fuzzy controller for the nonlinear crane model is simulated on the personal computer.

  • PDF