• Title/Summary/Keyword: Nonlinear loads

Search Result 1,028, Processing Time 0.031 seconds

Hysteretic Damage Model for Reinforced Concrete Joints Considering Bond-Slip (부착-슬립을 고려한 철근콘크리트 접합부의 이력 손상 모델 개발)

  • Kim, Do-Yeon;Choi, In-Kil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.517-528
    • /
    • 2008
  • This paper presents a hysteretic damage model for reinforced concrete (RC) joints that explicitly accounts for the bond-slip between the reinforcing bars and the surrounding concrete. A frame element whose displacement fields for the concrete and the reinforcing bars are different to permit slip is developed. From the fiber section concept, compatibility equations for concrete, rebar, and bond are defined. Modification of the hysteretic stress-strain curve of steel is conducted for partial unloading and reloading conditions. Local bond stress-slip relations for monotonic loads are updated at each slip reversal according to the damage factor. The numerical applications of the reinforcing bar embedded in the confined concrete block, the RC column anchored in the foundation, and the RC beam-column subassemblage validate the model accuracy and show how including the effects of bond-slip leads to a good assessment of the amount of energy dissipation during loading histories.

Nonlinear finite element modeling of the self-centering steel moment connection with cushion flexural damper

  • Ali Nazeri;Reza Vahdani;Mohammad Ali Kafi
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.151-164
    • /
    • 2023
  • The latest earthquake's costly repairs and economic disruption were brought on by excessive residual drift. Self-centering systems are one of the most efficient ways in the current generation of seismic resistance system to get rid of and reduce residual drift. The mechanics and behavior of the self-centering system in response to seismic forces were impacted by a number of important factors. The amount of post-tensioning (PT) force, which is often employed for the standing posture after an earthquake, is the first important component. The energy dissipater element is another one that has a significant impact on how the self-centering system behaves. Using the damper as a replaceable and affordable tool and fuse in self-centering frames has been recommended to boost energy absorption and dampening of structural systems during earthquakes. In this research, the self-centering steel moment frame connections are equipped with cushion flexural dampers (CFDs) as an energy dissipator system to increase energy absorption, post-yielding stiffness, and ease replacement after an earthquake. Also, it has been carefully considered how to reduce permanent deformations in the self-centering steel moment frames exposed to seismic loads while maintaining adequate stiffness, strength, and ductility. After confirming the FE model's findings with an earlier experimental PT connection, the behavior of the self-centering connection using CFD has been surveyed in this study. The FE modeling takes into account strands preloading as well as geometric and material nonlinearities. In addition to contact and sliding phenomena, gap opening and closing actions are included in the models. According to the findings, self-centering moment-resisting frames (SF-MRF) combined with CFD enhance post-yielding stiffness and energy absorption with the least amount of permeant deformation in a certain CFD thickness. The obtained findings demonstrate that the effective energy dissipation ratio (β), is increased to 0.25% while also lowering the residual drift to less than 0.5%. Also, this enhancement in the self-centering connection with CFD's seismic performance was attained with a respectable moment capacity to beam plastic moment capacity ratio.

Numerical Study on Columns Subjected to Blast Load Considering Compressive Behavior of Steel Fiber Reinforced Concrete (강섬유보강콘크리트의 압축거동 특성을 반영한 기둥의 내폭해석 )

  • Jae-Min Kim;Sang-Hoon Lee;Jae Hyun Kim;Kang Su Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.105-112
    • /
    • 2023
  • Steel fiber reinforced concrete (SFRC) exhibits enhanced strength and superior energy dissipation capacity compared to normal concrete, and it can also reduce crack propagation and fragmentation of concrete even when subjected to blast loads. In this study, the parameters defining failure surface and damage function of the K&C concrete nonlinear model were proposed to be applied for the properties of SFRC in LS-DYNA. Single element analysis has been conducted to validate the proposed parameters in the K&C model, which provided very close simulations on the compressive behavior of SFRC. In addition, blast analysis was performed on SFRC columns with different volume fractions of steel fibers, and the blast resistance of SFRC columns was quantitatively analyzed with Korea Occupational Safety & Health Agency (KOSHA) guidelines.

The Effect of Out-of-Plane Load on the In-Plane Shear Capacity of Reinforcement Concrete Shear Wall (철근 콘크리트 전단벽에서 면외 하중이 면내 전단성능에 미치는 영향)

  • Shin, Hye Min;Park, Jun Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.77-83
    • /
    • 2024
  • The design shear strength equations of RC shear walls have been developed based on their performance under in-plane (IP) loads, thereby failing to account for the potential performance degradation of shear strength when subjected to simultaneous out-of-plane (OOP) loading. Most of the previous experimental studies on RC walls have been conducted in one direction under quasi-static conditions, and due to the difficulty in experimental planning, there is a lack of research on cyclic loading and results under multi-axial loading conditions. During an earthquake, shear walls may yield earlier than their design strength or fail unexpectedly when subjected to multi-directional forces, deviating from their intended failure mode. In this paper, nonlinear analysis in finite element models was performed based on the results of cyclic loading experiments on reinforced concrete shear walls of auxiliary buildings. To investigate the reduction trend in IP shear capacity concerning the OOP load ratio, parametric analysis was conducted using the shear wall FEM. The analysis results showed that as the magnitude of the OOP load increased, the IP strength decreased, with a more significant effect observed as the size of the opening increased. Thus, the necessity to incorporate this strength reduction as a factor for the OOP load effect in the wall design strength equation should be discussed by performing various parametric studies.

Impact of openings on the structural performance of ferrocement I-Beams under flexural loads

  • Yousry B.I. Shaheen;Ghada M. Hekal;Ayman M. Elshaboury;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.371-390
    • /
    • 2024
  • Investigating the impact of openings on the structural behavior of ferrocement I-beams with two distinct types of reinforcing metallic and non-metallic meshes is the primary goal of the current study. Up until failure, eight 250x200x2200 mm reinforced concrete I-beams were tested under flexural loadings. Depending on the kind of meshes used for reinforcement, the beams are split into two series. A control I-beam with no openings and three beams with one, two, and three openings, respectively, are found in each series. The two series are reinforced with three layers of welded steel meshes and two layers of tensar meshes, respectively, in order to maintain a constant reinforcement ratio. Structural parameters of investigated beams, including first crack, ultimate load, deflection, ductility index, energy absorption, strain characteristics, crack pattern, and failure mode were reported. The number of mesh layers, the volume fraction of reinforcement, and the kind of reinforcing materials are the primary factors that vary. This article presents the outcomes of a study that examined the experimental and numerical performance of ferrocement reinforced concrete I-beams with and without openings reinforced with welded steel mesh and tensar mesh separately. Utilizing ANSYS-16.0 software, nonlinear finite element analysis (NLFEA) was applied to illustrate how composite RC I-beams with openings behaved. In addition, a parametric study is conducted to explore the variables that can most significantly impact the mechanical behavior of the proposed model, such as the number of openings. The FE simulations produced an acceptable degree of experimental value estimation, as demonstrated by the obtained experimental and numerical results. It is also noteworthy to demonstrate that the strength gained by specimens without openings reinforced with tensar meshes was, on average, 22% less than that of specimens reinforced with welded steel meshes. For specimens with openings, this value is become on average 10%.

Effects of hygro-thermal environment on dynamic responses of variable thickness functionally graded porous microplates

  • Quoc-Hoa Pham;Phu-Cuong Nguyen;Van-Ke Tran
    • Steel and Composite Structures
    • /
    • v.50 no.5
    • /
    • pp.563-581
    • /
    • 2024
  • This paper presents a novel finite element model for the free vibration analysis of variable-thickness functionally graded porous (FGP) microplates resting on Pasternak's medium in the hygro-thermal environment. The governing equations are established according to refined higher-order shear deformation plate theory (RPT) in construction with the modified couple stress theory. For the first time, three-node triangular elements with twelve degrees of freedom for each node are developed based on Hermitian interpolation functions to describe the in-plane displacements and transverse displacements of microplates. Two laws of variable thickness of FGP microplates, including the linear law and the nonlinear law in the x-direction are investigated. Effects of thermal and moisture changes on microplates are assumed to vary continuously from the bottom surface to the top surface and only cause tension loads in the plane, which does not change the material's mechanical properties. The numerical results of this work are compared with those of published data to verify the accuracy and reliability of the proposed method. In addition, the parameter study is conducted to explore the effects of geometrical and material properties such as the changing law of the thickness, length-scale parameter, and the parameters of the porosity, temperature, and humidity on the free vibration response of variable thickness FGP microplates. These results can be applied to design of microelectromechanical structures in practice.

Performance Experiments and Analysis of Nonlinear Behavior for HDRB using in Seismic Isolation (면진용 고감쇠 적층고무베어링의 성능 특성 실험 및 비선형 거동해석)

  • Koo, Gyeong-Hoi;Lee, Jae-Han;Yoo, Bong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.73-86
    • /
    • 1998
  • The purpose of this paper is to evaluate the shear stiffness, hysteretic behavior, and ultimate behavior of HDRB(High Damping Rubber Bearing), which will be included in the seismic isolation design guideline as requirements. To do this, two 1/8 scaled HDRB are designed, fabricated, and tested to show the mechanical characteristics. The shear stiffness obtained from the proposed equation of the shear stiffness shows a good agreement with those of the experiments. For analysis of the hysteretic behavior of HDRB using the modified rate model, the parameter equations are obtained from the experiments. Using the obtained parameter equations for the modified rate model, the seismic response analyses are carried out for 1-D system. The results of analysis well follow the hysteretic behavior of HDRB obtained from the experiments. To evaluate the ultimate behavior of HDRB used in this paper, the analyses are carried out using the modified macro model, which can consider the large shear deflection. The critical shear strain(CSS) is defined to express the maximum allowable shear strain and vertical load. From the analyses, the CSS, showing the instability, decreases significantly as increased the vertical loads. The CSS is not appeared for the design vertical load in the used HDRB. In analysis using about 5 times of design vertical load, the HDRB start to show the instability transient and for about 7 times, the CSS is about 350%.

  • PDF

Optimum Design and Structural Application of the Bracing Damper System by Utilizing Friction Energy Dissipation and Self-Centering Capability (마찰 에너지 소산과 자동 복원력을 활용한 가새 댐퍼 시스템의 최적 설계와 구조적 활용)

  • Hu, Jong Wan;Park, Ji-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.377-387
    • /
    • 2014
  • This study mainly treats a new type of the bracing friction damper system, which is able to minimize structural damage under earthquake loads. The slotted bolt holes are placed on the shear faying surfaces with an intention to dissipate considerable amount of friction energy. The superelastic shape memory alloy (SMA) wire strands are installed crossly between two plates for the purpose of enhancing recentering force that are able to reduce permanent deformation occurring at the friction damper system. The smart recentering friction damper system proposed in this study can be expected to reduce repair cost as compared to the conventional damper system because the proposed system mitigates the inter-story drift of the entire frame structure. The response mechanism of the proposed damper system is firstly investigated in this study, and then numerical analyses are performed on the component spring models calibrated to the experimental results. Based on the numerical analysis results, the seismic performance of the recentering friction damper system with respect to recentering capability and energy dissipation are investigated before suggesting optimal design methodology. Finally, nonlinear dynamic analyses are conducted by using the frame models designed with the proposed damper systems so as to verify superior performance to the existing damper systems.

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part B: Analysis for the Effect of Explosion Loading Time According to the Natural Period for Target Structures - (폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part B: 고유주기에 따른 폭발하중 지속시간의 영향 분석 -)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, YongHee;Choi, JaeWoong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.197-205
    • /
    • 2015
  • Offshore structures for the gas production are exposed to the risk of gas leaks, and gas explosions can result in fatal damages to the primary structures as well as secondary structures. To minimize the damage from the critical accidents, the study of the dynamic response of structural members subjected to blast loads must be conducted. Furthermore, structural dynamic analysis has to be performed considering relationships between the natural frequency of structural members and time duration of the explosion loading because the explosion pressure tends to increase and dissipate within an extremely short time. In this paper, the numerical model based on time history data were proposed considering the negative phase pressure in which considerable negative phase pressures were observed in CFD analyses of gas explosions. The undamped single degree of freedom(SDOF) model was used to characterize the dynamic response under the blast loading. A blast wall of FPSO topside was considered as an essential structure in which the wall prevents explosion pressures from the process area to utility and working areas. From linear/nonlinear transient analyses using LS-DYNA, it was observed that dynamic responses of structures were influenced by significantly the negative time duration.

Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings

  • Ramezani, Meysam;Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.61-74
    • /
    • 2017
  • One of the most reliable and simplest tools for structural vibration control in civil engineering is Tuned Mass Damper, TMD. Provided that the frequency and damping parameters of these dampers are tuned appropriately, they can reduce the vibrations of the structure through their generated inertia forces, as they vibrate continuously. To achieve the optimal parameters of TMD, many different methods have been provided so far. In old approaches, some formulas have been offered based on simplifying models and their applied loadings while novel procedures need to model structures completely in order to obtain TMD parameters. In this paper, with regard to the nonlinear decision-making of fuzzy systems and their enough ability to cope with different unreliability, a method is proposed. Furthermore, by taking advantage of both old and new methods a fuzzy system is designed to be operational and reduce uncertainties related to models and applied loads. To design fuzzy system, it is required to gain data on structures and optimum parameters of TMDs corresponding to these structures. This information is obtained through modeling MDOF systems with various numbers of stories subjected to far and near field earthquakes. The design of the fuzzy systems is performed by three methods: look-up table, the data space grid-partitioning, and clustering. After that, rule weights of Mamdani fuzzy system using the look-up table are optimized through genetic algorithm and rule weights of Sugeno fuzzy system designed based on grid-partitioning methods and clustering data are optimized through ANFIS (Adaptive Neuro-Fuzzy Inference System). By comparing these methods, it is observed that the fuzzy system technique based on data clustering has an efficient function to predict the optimal parameters of TMDs. In this method, average of errors in estimating frequency and damping ratio is close to zero. Also, standard deviation of frequency errors and damping ratio errors decrease by 78% and 4.1% respectively in comparison with the look-up table method. While, this reductions compared to the grid partitioning method are 2.2% and 1.8% respectively. In this research, TMD parameters are estimated for a 15-degree of freedom structure based on designed fuzzy system and are compared to parameters obtained from the genetic algorithm and empirical relations. The progress up to 1.9% and 2% under far-field earthquakes and 0.4% and 2.2% under near-field earthquakes is obtained in decreasing respectively roof maximum displacement and its RMS ratio through fuzzy system method compared to those obtained by empirical relations.