• 제목/요약/키워드: Nonlinear loads

검색결과 1,028건 처리시간 0.027초

아티큘레이티드 타워 형태의 부이 구조물에 관한 파랑 중 운동응답 및 앵커 지지력에 관한 모형시험 연구 (Model Test on Motion Responses and Anchor Reaction Forces of an Articulated Tower-Type Buoy Structure in Waves)

  • 권용주;남보우;김남우;원영욱;박인보;김시문
    • 한국해양공학회지
    • /
    • 제33권3호
    • /
    • pp.214-221
    • /
    • 2019
  • A series of model tests was performed to evaluate the survivability of an articulated tower-type buoy structure under harsh environmental conditions. The buoy structure consisted of three long pipes, a buoyancy module, and top equipment. The scale model was made of acrylic pipe and plastic with a scale ratio of 1/22. The experiments were carried out at the ocean engineering basin of KRISO. The performance of the buoy structure was investigated under waves only and under combined environmental conditions from sea state (SS) 5 to 7. A nonlinear time-domain numerical simulation was conducted using the mooring analysis program OrcaFlex. The survivability of the buoy was analyzed based on three factors: the pitch motion, submergence of the top structure, and anchor reaction force. The model test results were directly compared to the results of numerical simulations. The effects of the sea state and combined environment on the performance of the buoy structure were investigated.

Lifetime seismic performance assessment of high-rise steel-concrete composite frame with buckling-restrained braces under wind-induced fatigue

  • Liu, Yang;Li, Hong-Nan;Li, Chao;Dong, Tian-Ze
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.197-215
    • /
    • 2021
  • Under a severe environment of multiple hazards such as earthquakes and winds, the life-cycle performance of engineering structures may inevitably be deteriorated due to the fatigue effect caused by long-term exposure to wind loads, which would further increase the structural vulnerability to earthquakes. This paper presents a framework for evaluating the lifetime structural seismic performance under the effect of wind-induced fatigue considering different sources of uncertainties. The seismic behavior of a high-rise steel-concrete composite frame with buckling-restrained braces (FBRB) during its service life is systematically investigated using the proposed approach. Recorded field data for the wind hazard of Fuzhou, Fujian Province of China from Jan. 1, 1980 to Mar. 31, 2019 is collected, based on which the distribution of wind velocity is constructed by the Gumbel model after comparisons. The OpenSees platform is employed to establish the numerical model of the FBRB and conduct subsequent numerical computations. Allowed for the uncertainties caused by the wind generation and structural modeling, the final annual fatigue damage takes the average of 50 groups of simulations. The lifetime structural performance assessments, including static pushover analyses, nonlinear dynamic time history analyses and fragility analyses, are conducted on the time-dependent finite element (FE) models which are modified in lines with the material deterioration models. The results indicate that the structural performance tends to degrade over time under the effect of fatigue, while the influencing degree of fatigue varies with the duration time of fatigue process and seismic intensity. The impact of wind-induced fatigue on structural responses and fragilities are explicitly quantified and discussed in details.

주기적 하중을 받는 SCH 40 3-Inch 탄소강관엘보의 소산에너지 기반의 손상지수 평가 (Damage Index Evaluation Based on Dissipated Energy of SCH 40 3-Inch Carbon Steel Pipe Elbows Under Cyclic Loading)

  • 김성완;윤다운;전법규;김성도
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권1호
    • /
    • pp.112-119
    • /
    • 2021
  • 지진하중으로 인한 배관계통의 파괴모드는 라체트를 동반하는 저주기 피로파괴이며 비선형 거동이 집중되고 파손이 발생하는 요소는 엘보인 것으로 나타났다. 본 연구에서는 저주기 피로에 의한 SCH 40 3인치 탄소강관엘보의 파괴기준을 정량적으로 표현하기 위하여 한계상태를 누수로 정의하고 면내반복가력실험을 수행하였다. 배관계통에서 지진하중에 취약한 요소인 탄소강관엘보에 대하여 모멘트-변형각의 관계를 이용한 손상지수를 나타내었으며 힘-변위의 관계를 이용하여 산정된 손상지수와 비교-분석하였다. 탄소강관엘보에 대하여 반복되는 외력에 의한 소산에너지에 기반을 둔 손상지수로서 누수가 발생한 한계상태를 정량적으로 표현하였다.

Potential side-NSM strengthening approach to enhance the flexural performance of RC beams: Experimental, numerical and analytical investigations

  • Md. Akter, Hosen; Mohd Zamin, Jumaat;A.B.M. Saiful, Islam;Khalid Ahmed, Al Kaaf;Mahaad Issa, Shammas;Ibrahim Y., Hakeem;Mohammad Momeen, Ul Islam
    • Structural Engineering and Mechanics
    • /
    • 제85권2호
    • /
    • pp.179-195
    • /
    • 2023
  • The performance of reinforced concrete (RC) beam specimens strengthened using a newly proposed Side Near Surface Mounted (S-NSM) technology was investigated experimentally in this work. In addition, analytical and nonlinear finite element (FE) modeling was exploited to forecast the performance of RC members reinforced with S-NSM utilizing steel bars. Five (one control and four strengthened) RC beams were evaluated for flexural performance under static loading conditions employing four-point bending loads. Experimental variables comprise different S-NSM reinforcement ratios. The constitutive models were applied for simulating the non-linear material characteristics of used concrete, major, and strengthening reinforcements. The failure load and mode, yield and ultimate strengths, deflection, strain, cracking behavior as well as ductility of the beams were evaluated and discussed. To cope with the flexural behavior of the tested beams, a 3D non-linear FE model was simulated. In parametric investigations, the influence of S-NSM reinforcement, the efficacy of the S-NSM procedure, and the structural response ductility are examined. The experimental, numerical, and analytical outcomes show good agreement. The results revealed a significant increase in yield and ultimate strengths as well as improved failure modes.

공통격벽 추진제 탱크 구조의 좌굴 Knockdown Factor 도출 연구 (Study on Deriving the Buckling Knockdown Factor of a Common Bulkhead Propellant Tank)

  • 이숙;손택준;최상민;배진효
    • 한국추진공학회지
    • /
    • 제26권3호
    • /
    • pp.10-21
    • /
    • 2022
  • 우주 발사체 구조인 추진제 탱크는 지상운송, 발사대기, 이륙 및 비행 과정 동안 다양한 정적 및 동적 하중이 작용하여 이에 대해 구조건전성을 보유해야 하며 더불어 추진제를 많이 싣기 위해서 크고 가벼워야 한다. 이런 특성으로 본 연구의 구조 대상인 추진제 탱크 실린더는 얇은 두께를 가지게 되어 실린더 설계에서 압축하중에 의한 좌굴이 중요하게 고려된다. 하지만 기존의 수립된 NASA 및 유럽 등의 좌굴 설계 기준은 상당히 보수적인 값으로 최신 설계 및 제작 기술을 반영하지 못하고 있다. 본 연구에서는 초기 결함이 반영된 다양한 해석 모델을 이용하여 비선형 좌굴 해석을 수행하고 실린더 구조의 새로운 좌굴 설계 기준 수립 방안을 제시한다. 결론적으로 공통격벽 추진제 탱크 실린더 구조의 효과적인 경량 설계가 구현될 수 있음을 확인하였다.

Damaged cable detection with statistical analysis, clustering, and deep learning models

  • Son, Hyesook;Yoon, Chanyoung;Kim, Yejin;Jang, Yun;Tran, Linh Viet;Kim, Seung-Eock;Kim, Dong Joo;Park, Jongwoong
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.17-28
    • /
    • 2022
  • The cable component of cable-stayed bridges is gradually impacted by weather conditions, vehicle loads, and material corrosion. The stayed cable is a critical load-carrying part that closely affects the operational stability of a cable-stayed bridge. Damaged cables might lead to the bridge collapse due to their tension capacity reduction. Thus, it is necessary to develop structural health monitoring (SHM) techniques that accurately identify damaged cables. In this work, a combinational identification method of three efficient techniques, including statistical analysis, clustering, and neural network models, is proposed to detect the damaged cable in a cable-stayed bridge. The measured dataset from the bridge was initially preprocessed to remove the outlier channels. Then, the theory and application of each technique for damage detection were introduced. In general, the statistical approach extracts the parameters representing the damage within time series, and the clustering approach identifies the outliers from the data signals as damaged members, while the deep learning approach uses the nonlinear data dependencies in SHM for the training model. The performance of these approaches in classifying the damaged cable was assessed, and the combinational identification method was obtained using the voting ensemble. Finally, the combination method was compared with an existing outlier detection algorithm, support vector machines (SVM). The results demonstrate that the proposed method is robust and provides higher accuracy for the damaged cable detection in the cable-stayed bridge.

고속 전동기용 무급유 포일 저널 베어링 구조체의 하중지지 및 진동 특성 규명 (Identification of Load Carrying and Vibration Characteristics of Oil-Free Foil Journal Bearing Structures for High Speed Motors)

  • 백두산;황성호;김태호
    • Tribology and Lubricants
    • /
    • 제37권6호
    • /
    • pp.261-272
    • /
    • 2021
  • This study investigates the structural characteristics of oil-free, gas beam foil journal bearings (GBFJBs) for use in high speed motors. Mathematical modeling was carried out, and reaction force modeling for static load was performed to predict the structural characteristics of the GBFJB. Mathematical modeling and reaction force modeling for static load are performed to predict the structural characteristics of GBFJBs. The reaction force of the test bearing against static loads was measured during experiments and compared with the predicted results. The measured experimental data reveal the nonlinear stiffness characteristics of the GBFJB against varying displacement and agree well with the predictions. Dynamic load tests using an exciter allow to identify the vibration characteristics of the GBFJB. Test results show that the vibration displacement, dynamic force, and acceleration measured on the test bearing are most dominant at the applied dynamic load (synchronization) frequency. Futhermore, the test results show that the hysteresis area recorded during the dynamic tests increases with the excitation amplitude and frequency, and that the beam stick phenomena occurr at high excitation frequencies. The single degree of freedom (DOF) vibration model aids to identify the stiffness and damping coefficient of the GBFJB, which decrease as the excitation frequency increases.

Exhaustive 시험 기법을 이용한 헬리콥터 능동 기체 진동 제어 시뮬레이션 (Helicopter Active Airframe Vibration Control Simulations Using an Exhaustive Test Method)

  • 박병현;이예린;박재상
    • 한국항공우주학회지
    • /
    • 제50권11호
    • /
    • pp.791-800
    • /
    • 2022
  • 능동 진동 제어 시스템(Active vibration control system, AVCS)을 이용하여 헬리콥터 기체의 능동 진동 제어 시 우수한 진동 제어 성능을 얻기 위하여서는 진동 상쇄 하중 발생기의 개수, 위치 및 하중 방향의 조합의 최적화가 중요하다. 따라서 고려 가능한 모든 하중 발생기의 조합에 대하여 헬리콥터 기체에 대한 AVCS의 진동 제어 성능을 조사하기 위해 Exhaustive 시험 기법을 적용한 AVCS 프레임워크를 구축하였다. 로터 진동 하중 해석, 기체 진동 응답 해석 및 AVCS 시뮬레이션 연구를 수행하기 위해 DYMORE II, MSC.NASTRAN 및 MATLAB Simulink 등 다양한 프로그램을 사용하였다. 이를 이용하여 비행 속도 158 knots의 UH-60A 헬리콥터에 대한 AVCS 적용을 위한 CRFG 조합을 최적화하였다. 최적의 CRFG 조합이 적용된 AVCS를 통해 UH-60A 헬리콥터의 4P 기체 진동 응답을 능동 제어한 결과, 기체의 주요 위치에서 4P 기체 진동 응답이 19.35~98.07%만큼 감소될 수 있었다.

Seismic holding behaviors of inclined shallow plate anchor embedded in submerged coarse-grained soils

  • Zhang, Nan;Wang, Hao;Ma, Shuqi;Su, Huaizhi;Han, Shaoyang
    • Geomechanics and Engineering
    • /
    • 제28권2호
    • /
    • pp.197-207
    • /
    • 2022
  • The seismic holding behaviors of plate anchor embedded into submerged coarse-grained soils were investigated considering different anchor inclinations. The limit equilibrium method and the Pseudo-Dynamic Approach (PDA) were employed to calculate the inertia force of the soils within the failure rupture. In addition, assuming the permeability of coarse-grained soils was sufficiently large, the coefficient of hydrodynamic force applied on the inclined plate anchor is obtained through adopting the exact potential flow theory. Therefore, the seismic holding resistance was calculated as the combination of the inertia force and the hydrodynamic force within the failure rupture. The failure rupture can be developed due to the uplift loads, which was assumed to be an arc of a circle perpendicular to the anchor and inclines at (π/4 - φ/2). Then, the derived analytical solutions were evaluated by comparing the static breakout factor Nγ to the published experimental and analytical results. The influences of soil and wave properties on the plate anchor holding behavior are reported. Finally, the dynamic anchor holding coefficients Nγd, were reported to illustrate the anchor holding behaviors. Results show that the soil accelerations in x and z directions were both nonlinear. The amplifications of soil accelerations were more severe at lower normalized frequencies (ωH/V) compared to higher normalized frequencies. The coefficient of hydrodynamic force, C, of the plate anchor was found to be almost constant with anchor inclinations. Finally, the seismic anchor holding coefficient oscillated with the oscillation of the inertia force on the plate anchor.

Behaviour and strength of back-to-back built-up cold-formed steel unequal angle sections with intermediate stiffeners under axial compression

  • Gnana Ananthi, G. Beulah;Roy, Krishanu;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제42권1호
    • /
    • pp.1-22
    • /
    • 2022
  • In cold-formed steel (CFS) structures, such as trusses, transmission towers and portal frames, the use of back-to-back built-up CFS unequal angle sections are becoming increasingly popular. In such an arrangement, intermediate welds or screw fasteners are required at discrete points along the length, preventing the angle sections from buckling independently. Limited research is available in the literature on axial strength of back-to-back built-up CFS unequal angle sections. The issue is addressed herein. This paper presents an experimental investigation reported by the authors on back-to-back built-up CFS unequal angle sections with intermediate stiffeners under axial compression. The load-axial shortening behaviour along with the deformed shapes at failure are reported. A nonlinear finite element (FE) model was then developed, which includes material non-linearity, geometric imperfections and modelling of intermediate fasteners. The FE model was validated against the experimental test results, which showed good agreement, both in terms of failure loads and deformed shapes at failure. The validated finite element model was then used for the purpose of a parametric study comprising 96 models to investigate the effect of longer to shorter leg ratios, stiffener provided in the longer leg, thicknesses and lengths on axial strength of back-to-back built-up CFS unequal angle sections. Four different thicknesses and seven different lengths (stub to slender columns) with three overall widths to the overall depth (B/D) ratios were investigated in the parametric study. Axial strengths obtained from the experimental tests and FE analyses were used to assess the performance of the current design guidelines as per the Direct Strength Method (DSM); obtained comparisons show that the current DSM is conservative by only 7% and 5% on average, while predicting the axial strengths of back-to-back built-up CFS unequal angle sections with and without the stiffener, respectively.