• 제목/요약/키워드: Nonlinear coupled system

검색결과 276건 처리시간 0.024초

LOCAL SYNCHRONIZATION OF MARKOVIAN NEURAL NETWORKS WITH NONLINEAR COUPLING

  • LI, CHUNJI;REN, XIAOTONG
    • Journal of applied mathematics & informatics
    • /
    • 제35권3_4호
    • /
    • pp.387-397
    • /
    • 2017
  • In order to react the dynamic behavior of the system more actually, it is necessary to solve the first problem of synchronization for Markovian jump complex network system in practical engineering problem. In this paper, the problem of local stochastic synchronization for Markovian nonlinear coupled neural network system is investigated, including nonlinear coupling terms and mode-dependent delays, that is less restriction to other system. By designing the Lyapunov-Krasovskii functional and applying less conservative inequality, we get a new criterion to ensure local synchronization in mean square for Markovian nonlinear coupled neural network system. The criterion introduced some free matrix variables, which are less conservative. The simulation confirmed the validity of the conclusion.

케이블-수중 예인체 시스템의 3차원 비선형 완전 연성해석 (3D Nonlinear Fully Coupled Simulation of Cable and Tow-fish System)

  • 고광수;이은택;안형택
    • 한국해양공학회지
    • /
    • 제30권6호
    • /
    • pp.458-467
    • /
    • 2016
  • In this paper, a strongly coupled method for investigating the interaction between a cable and tow-fish is presented. The nodal position finite element method was utilized to analyze the nonlinear cable dynamics, and 6DOF equations of motion were employed to describe the 3D rigid body motion of the tow-fish. Combining cable and tow-fish systems into a single formulation allowed the two nonlinear systems to be strongly coupled into a unified nonlinear system. This strongly coupled system was numerically integrated in the time domain using a predictor/multi-corrector Newmark algorithm. To demonstrate the validity, efficacy, and applicability of the current approach, two different scenarios (virtual and sea trial) were simulated, and the simulation results were validated using the physical plausibility and the sea trial test.

2 자유도 비선형 연성시스템에서 내부공진과 안정성 변화 (Internal Resonance and Stability Change for the Two Degree Nonlinear Coupled System)

  • 김명구;박철희;조종두
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.853-861
    • /
    • 2007
  • To understand the concept of dynamic motion in two degree nonlinear coupled system, free vibration not including damping and excitation is investigated with the concept of nonlinear normal mode. Stability analysis of a coupled system is conducted, and the theoretical analysis performed for the bifurcation phenomenon in the system. Bifurcation point is estimated using harmonic balance method. When the bifurcation occurs, the saddle point is always found on Poincare's map. Nonlinear phenomenon result in amplitude modulation near the saddle point and the internal resonance in the system making continuous interchange of energy. If the bifurcation in the normal mode is local, the motion remains stable for a long time even when the total energy is increased in the system. On the other hand, if the bifurcation is global, the motion in the normal mode disappears into the chaos range as the range becomes gradually large.

  • PDF

Electromechanical coupled nonlinear dynamics of euler beam rails for electromagnetic railgun

  • Xu, Lizhong;Wu, Dewen
    • Smart Structures and Systems
    • /
    • 제19권2호
    • /
    • pp.213-224
    • /
    • 2017
  • The electromagnetic field can cause an essential change of the dynamic behavior of the railgun. The evaluation of the dynamics performance of railgun is a mandatory task. Here, a nonlinear electromagnetic force equation of the railgun is given in which the clearance, the thickness and the width of the rail are considered. Based on it, the nonlinear electromechanical coupled dynamics equations of Euler beam rails for the railgun are proposed. Using the equations, the nonlinear free vibration frequency of the railgun is investigated and the effects of the system parameters on the frequency are analyzed. The nonlinear forced responses of the rail to the electromagnetic excitation are investigated as well. The results show that as the nonlinearity of the railgun system is considered, the vibration frequencies of the railgun system increase; as the current in the rail increases, the difference between the natural frequencies and the nonlinear vibration frequencies increases significantly; the nonlinearity of the railgun system is more obvious for smaller distance between the two rails, smaller rail thickness, and smaller stiffness of the elastic foundation; the unstable dynamics state of the rail system occurs when the armature runs to the exit of the railgun. The results are useful for design and application of the railgun system.

Formulation, solution and CTL software for coupled thermomechanics systems

  • Niekamp, R.;Ibrahimbegovic, A.;Matthies, H.G.
    • Coupled systems mechanics
    • /
    • 제3권1호
    • /
    • pp.1-25
    • /
    • 2014
  • In this work, we present the theoretical formulation, operator split solution procedure and partitioned software development for the coupled thermomechanical systems. We consider the general case with nonlinear evolution for each sub-system (either mechanical or thermal) with dedicated time integration scheme for each sub-system. We provide the condition that guarantees the stability of such an operator split solution procedure for fully nonlinear evolution of coupled thermomechanical system. We show that the proposed solution procedure can accommodate different evolution time-scale for different sub-systems, and allow for different time steps for the corresponding integration scheme. We also show that such an approach is perfectly suitable for parallel computations. Several numerical simulations are presented in order to illustrate very satisfying performance of the proposed solution procedure and confirm the theoretical speed-up of parallel computations, which follow from the adequate choice of the time step for each sub-problem. This work confirms that one can make the most appropriate selection of the time step with respect to the characteristic time-scale, carry out the separate computations for each sub-system, and then enforce the coupling to preserve the stability of the operator split computations. The software development strategy of direct linking the (existing) codes for each sub-system via Component Template Library (CTL) is shown to be perfectly suitable for the proposed approach.

Nonlinear stability and bifurcations of an axially accelerating beam with an intermediate spring-support

  • Ghayesh, Mergen H.;Amabili, Marco
    • Coupled systems mechanics
    • /
    • 제2권2호
    • /
    • pp.159-174
    • /
    • 2013
  • The present work aims at investigating the nonlinear dynamics, bifurcations, and stability of an axially accelerating beam with an intermediate spring-support. The problem of a parametrically excited system is addressed for the gyroscopic system. A geometric nonlinearity due to mid-plane stretching is considered and Hamilton's principle is employed to derive the nonlinear equation of motion. The equation is then reduced into a set of nonlinear ordinary differential equations with coupled terms via Galerkin's method. For the system in the sub-critical speed regime, the pseudo-arclength continuation technique is employed to plot the frequency-response curves. The results are presented for the system with and without a three-to-one internal resonance between the first two transverse modes. Also, the global dynamics of the system is investigated using direct time integration of the discretized equations. The mean axial speed and the amplitude of speed variations are varied as the bifurcation parameters and the bifurcation diagrams of Poincare maps are constructed.

Hopf Bifurcation Study of Inductively Coupled Power Transfer Systems Based on SS-type Compensation

  • Xia, Chenyang;Yang, Ying;Peng, Yuxiang;Hu, Aiguo Patrick
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.655-664
    • /
    • 2019
  • In order to analyze the nonlinear phenomena of the bifurcation and chaos caused by the switching of nonlinear switching devices in inductively coupled power transfer (ICPT) systems, a Jacobian matrix model, based on discrete mapping numerical modeling, is established to judge the system stability of the periodic closed orbit and to study the nonlinear behavior of Hopf bifurcation in a system under full resonance. The general flow of the parameter design, based on the stability principle for ICPT systems, is proposed to avoid the chaos and bifurcation phenomena caused by unreasonable parameter selection. Firstly, based on the state equation of SS-type compensation, a three-dimensional bifurcation diagram with the coupling coefficient as the bifurcation parameter is established with a numerical simulation to observe the nonlinear phenomena in the system. Then Filippov's method based on a Jacobian matrix model is adopted to deduce the boundary of stable operation and to judge the type of the bifurcation in the system. Then the general flow of the parameter design based on the stability principle for ICPT systems is proposed through the above analysis to realize stable operation under the conditions of weak coupling. Finally, an experimental platform is built to confirm the correctness of the numerical simulation and modeling.

Combination resonances in forced vibration of spar-type floating substructure with nonlinear coupled system in heave and pitch motion

  • Choi, Eung-Young;Jeong, Weui-Bong;Cho, Jin-Rae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권3호
    • /
    • pp.252-261
    • /
    • 2016
  • A spar-type floating substructure that is being widely used for offshore wind power generation is vulnerable to resonance in the heave direction because of its small water plane area. For this reason, the stable dynamic response of this floating structure should be ensured by accurately identifying the resonance characteristics. The purpose of this study is to analyze the characteristics of the combination resonance between the excitation frequency of a regular wave and natural frequencies of the floating substructure. First, the nonlinear equations of motion with two degrees of freedom are derived by assuming that the floating substructure is a rigid body, where the heaving motion and pitching motions are coupled. Moreover, to identify the characteristics of the combination resonance, the nonlinear term in the nonlinear equations is approximated up to the second order using the Taylor series expansion. Furthermore, the validity of the approximate model is confirmed through a comparison with the results of a numerical analysis which is made by applying the commercial software ANSYS AQWA to the full model. The result indicates that the combination resonance occurs at the frequencies of ${\omega}{\pm}{\omega}_5$ and $2{\omega}_{n5}$ between the excitation frequency (${\omega}$) of a regular wave and the natural frequency of the pitching motion (${\omega}_{n5}$) of the floating substructure.

Aviation stability analysis with coupled system criterion of theoretical solutions

  • C.C. Hung;T. Nguyen
    • Coupled systems mechanics
    • /
    • 제12권3호
    • /
    • pp.221-239
    • /
    • 2023
  • In our research, we have proposed a solid solution for aviation analysis which can ensure the asymptotic stability of coupled nonlinear plants, according to the theoretical solutions and demonstrated method. Because this solution employed the scheme of specific novel theorem of control, the controllers are artificially combined by the parallel distribution computation to have a feasible solution given the random coupled systems with aviation stability analysis. Therefore, we empathize and manually derive the results which shows the utilized lemma and criterion are believed effective and efficient for aircraft structural analysis of composite and nonlinear scenarios. To be fair, the experiment by numerical computation and calculations were explained the perfectness of the methodology we provided in the research.

Rigid block coupled with a 2 d.o.f. system: Numerical and experimental investigation

  • Pagliaro, Stefano;Aloisio, Angelo;Alaggio, Rocco;Di Egidio, Angelo
    • Coupled systems mechanics
    • /
    • 제9권6호
    • /
    • pp.539-562
    • /
    • 2020
  • In this paper the linear elastic coupling between a 2 degree of freedom shear-type frame system and a rigid block is analytically and experimentally investigated. As demonstrated by some of the authors in previous papers, it is possible to choose a coupling system able to guarantee advantages, whatever the mechanical characteristics of the frame. The main purpose of the investigation is to validate the analytical model. The nonlinear equations of motion of the coupled system are obtained by a Lagrangian approach and successively numerically integrated under harmonic and seismic excitation. The results, in terms of gain graphs, maps and spectra, represent the ratio between the maximum displacements or drifts of the coupled and uncoupled systems as a function of the system's parameters. Numerical investigations show the effectiveness of the nonlinear coupling for a large set of parameters. Thus experimental tests are carried out to verify the analytical results. An electro-dynamic long-stroke shaker sinusoidally and seismically forces a shear-type 2 d.o.f frame coupled with a rigid aluminium block. The experimental investigations confirm the effectiveness of the coupling as predicted by the analytical model.