• 제목/요약/키워드: Nonlinear controller

검색결과 2,175건 처리시간 0.021초

Design and Application of a Nonlinear Coordinated Excitation and TCPS Controller in Power Systems

  • Hashmani Ashfaque Ahmed;Wang Youyi;Lie Tek Tjing
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권spc2호
    • /
    • pp.346-354
    • /
    • 2005
  • This paper presents a new approach to Thyristor Controlled Phase Shifter (TCPS) control. In this paper we have proposed a nonlinear coordinated generator excitation and TCPS controller to enhance the transient stability of a power system. The proposed controller is able to control three main parameters affecting a.c. power transmission: namely excitation voltage, phase angle and reactance in a coordinated manner. The TCPS is located at the midpoint of the transmission line. A nonlinear feedback control law is proposed to linearize and decouple the power system. The design of the proposed controller is based on the local measurements only. Simulation results have been shown to demonstrate the effectiveness of the proposed controller for the enhancement of transient stability of the power system under a large sudden fault.

비선형 보상기와 피드포워드 제어에 의한 로봇의 위치/힘 제어 (Position/Force Control of a Robot by a Nonlinear Compensator and Feedforward Control)

  • 황용연
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권2호
    • /
    • pp.232-240
    • /
    • 1998
  • This paper deals with a hybrid position/force control of a robot which is moving on the constrained object with constant force. The proposed controller is composed of a position and force controller. The position controller has a nonlinear compensator which is based on the dynamic robot model and the force controller is attached by feedforward element. A direct drive robot with hard nonlinearity which is controlled by the proposed algorithm has moved on the constrained object with a high stiffness and low stiffness. The results show that the proposed controller has more vibration suppression effects which is occurred to the constrained object with a high stiffness, than a existing feedback controller, and accurate force control can be obtained by comparatively a small feedback gain.

  • PDF

계통의 안정성을 고려한 비선형 FACTS 신경망 제어기설계 (Design of Nonlinear FACTS Controller with Neural Networks for Power System Stabilization)

  • 박성욱;서보혁
    • 전기학회논문지P
    • /
    • 제51권4호
    • /
    • pp.211-218
    • /
    • 2002
  • We propose a intelligent controller for FACTS device to stabilize a power system. In order to identify the nonlinear characteristics of the power system and to estimate a control signal, an artificial neural network is utilized. Parameter and location of Unified Power Flow Controller(UPFC) on power system operating conditions are discussed. A UPFC is composed of an excitation transformer, a boosting, two three-phase GTO based voltage source converters, and a dc link capacitor. The proposed controller is applied to UPFC to verified the effectiveness of the proposed control system. The results show that the proposed nonlinear FACTS controller is able to enhance the transient stability of a three machine and nine bus system.

비선형 시스템을 위한 보간 기반의 적응 LQ 제어 (Interpolation-Based Adaptive LQ Control for Nonlinear Systems)

  • 이윤형;안종갑;진강규;소명옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.618-623
    • /
    • 2008
  • This paper presents a design method of the Interpolation-based adaptive LQ controller that is accomplished by getting the final controller interpolated with each gain of sub-LQ controllers. The Lagrange interpolation method is used in the scheme. The proposed controller is useful to control nonlinear systems which are especially changed the system parameters. The design method is illustrated by an application to the stabilization and tracking problems of an inverted pole system on a cart. Several cases of simulations are carried out in order to validate the control effectiveness and robustness. The simulation results are compared with those of LQ controller and prove the better control performance than LQ controller.

불확실성을 갖는 비선형 시스템을 위한 퍼지 모델 기반 제어기의 지능형 디지털 재설계 (Intelligent Digital Redesign of a Fuzzy-Model-Based Controllers for Nonlinear Systems with Uncertainties)

  • 장권규;권오신;주영훈
    • 제어로봇시스템학회논문지
    • /
    • 제12권3호
    • /
    • pp.227-232
    • /
    • 2006
  • In this paper, we propose a systematic method for intelligent digital redesign of a fuzzy-model-based controller for continuous-time nonlinear system which may also contain system uncertainties. The continuous-time uncertain TS fuzzy model is first contructed to represent the uncertain nonlinear system. A parallel distributed compensation(PDC) technique is then used to design a fuzzy-model-based controller for both stabilization. The designed continuous-time controller is then converted to an equivalent discrete-time controller by using a globally intelligent digital redesign method. This new technique is designed by a global matching of state variables between analog control system and digital control system. This new design technique provides a systematic and effective framework for integration of the fuzzy-model-based control theory and the advanced digital redesign technique for nonlinear systems with uncertainties. Finally, Chaotic Lorenz system is used as an illustrative example to show the effectiveness and the feasibility of the developed design method.

피드백 선형화를 이용한 비선형 시스템에 대한 최적 제어 (The optimal control for a nonlinear system using the feedback linearization)

  • 이종용;이원석
    • 대한전자공학회논문지TE
    • /
    • 제42권3호
    • /
    • pp.25-30
    • /
    • 2005
  • 대부분의 경우, 비선형 최적 제어 문제는 헤밀톤-야코비 방정식(Hamilton-Jacobi equations)을 풀어야하는데, HJEs는 해석적으로 답을 구하기가 매우 어렵다. 그래서 이러한 어려움은 비선형 시스템에 피드백 선형화를 적용하여, 선형화된 시스템을 얻고, 선형화된 선형 시스템에 대한 최적 제어 문제를 고려하게 되었다. 본 논문에서는 간단한 비선형 시스템의 예에 최적 제어 설계 기법과 피드백 선형화 제어기, 선형 제어기를 적용하여, 최적 성능을 평가함으로서, 피드백 선형화 최적 제어가 적용되는 비선형 시스템의 조건을 제시한다.

Anti-sway and Position 3D Control of the Nonlinear Crane System using Fuzzy Algorithm

  • Lee, Tae-Young;Lee, Sang-Ryong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권1호
    • /
    • pp.66-75
    • /
    • 2002
  • The crane operation used fur transporting heavy loads causes a swinging motion with the loads due to the crane\`s acceleration and deceleration. This sway causes the suspension ropes to leave their grooves and can cause serious damage. Ideally, the purpose of a crane system is to transport loads to a goal position as soon as possible without any oscillation of the rope. Currently, cranes are generally operated based on expert knowledge alone, accordingly, the development of a satisfactory control method that can efficiently suppress object sway during transport is essential. The dynamic behavior of a crane shows nonlinear characteristics. When the length of the rope is changed, a crane becomes a time-varying system thus the design of an anti-sway controller is very difficult. In this paper, a nonlinear dynamic model is derived for an industrial overhead crane whose girder, trolley, and hoister move simultaneously. Furthermore, a fuzzy logic controller, based on expert experiments during acceleration, constant velocity, deceleration, and stop position periods is proposed to suppress the swing motion and control the position of the crane. Computer simulation is then used to test the performance of the fuzzy controller with the nonlinear crane model.

퍼지 알고리즘을 이용한 비선형 크레인 시스템의 진동방지 및 3차원 위치제어 (Anti-sway and 3D position Control of the Nonlinear Crane System using Fuzzy Algorithm)

  • 이태영;이상룡
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.193-202
    • /
    • 1999
  • Crane operation for transporting heavy loads causes swinging motion at the loads due to crane's acceleration and deceleration. This sway causes the suspension ropes to leave their grooves and leads to possibility of serious damages. So, this swing of the objects is a serious problem and the goal of crane system is transporting to a goal position as soon as possible without the oscillation of the rope. Generally crane is operated by expert's knowledge. Therefore, a satisfactory control method to supress object sway during transport is indispensible. The dynamic behavior of the crane shows nonlinear characteristics. when the length of the rope is changed the crane is time varying system and the design of anti-sway controller is very difficult. In this paper, the nonlinear dynamic model for the industrial overhead crane whose girder, trolley and hoister move simultaneously is derived. and the Fuzzy logic controller based on the expert experiments during acceleration, constant velocity, deceleration and stop position period is proposed to supress the swing motion and control the position of the crane. The performance of the fuzzy controller for the nonlinear crane model is simulated on the personal computer.

  • PDF

영구자석 동기전동기의 비선형 속도 제어기 및 퍼지토크관측기 설계에 대한 연구 (A Study on the Design of a Nonlinear Speed Controller and a Fuzzy Load Torque Observer for a PM Synchronous Motor)

  • 정진우
    • 전력전자학회논문지
    • /
    • 제15권4호
    • /
    • pp.282-287
    • /
    • 2010
  • 본 논문에서는 영구자석 동기전동기(PMSM)를 위한 비선형 속도제어기와 Takagi-Sugeno 퍼지 기법을 이용한 퍼지 부하 토크관측기를 제안한다. 또한 제안된 비선형 속도제어기와 퍼지 토크관측기가 존재하기 위한 LMI 조건을 유도하고, 제어기와 관측기의 이득 행렬을 계산하기 위한 선형 행렬 부등식(LMI) 매개변수화가 주어진다. 제안된 비선형 속도제어기와 퍼지 부하 토크관측기의 성능을 검증하기 위하여, 모터 파라미터 및 부하 토크 변동 하에서 시뮬레이션 및 실험 결과가 주어졌다.

Hyperbolic Quotient 경쟁학습 신경회로망을 사용한 비선형 확률시스템 제어에 관한 연구 (A Study on a Stochastic Nonlinear System Control Using Hyperbolic Quotient Competitive Learning Neural Networks)

  • 석진욱;조성원;최경삼
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.346-352
    • /
    • 1998
  • In this paper, we give some geometric condition for a stochastic nonlinear system and we propose a control method for a stochastic nonlinear system using neural networks. Since a competitive learning neural networks has been developed based on the stochastic approximation method, it is regarded as a stochastic recursive filter algorithm. In addition, we provide a filtering and control condition for a stochastic nonlinear system, called perfect filtering condition, in a viewpoint of stochastic geometry. The stochastic nonlinear system satisfying the perfect filtering condition is decoupled with a deterministic part and purely semi martingale part. Hence, the above system can be controlled by conventional control laws and various intelligent control laws. Computer simulation shows that the stochastic nonlinear system satisfying the perfect filtering condition is controllable. and the proposed neural controller is more efficient than the conventional LQG controller and the canoni al LQ-Neural controller.

  • PDF