• Title/Summary/Keyword: Nonlinear control system

Search Result 3,012, Processing Time 0.033 seconds

Tracking Control of Variable Structure System with a New Variable Boundary Layer (새로운 가변 경계층을 갖는 가변 구조 제어 시스템의 추적 제어)

  • Lee, Hui-Jin;Kim, Eun-Tae;Kim, Dong-Yeon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.3
    • /
    • pp.19-32
    • /
    • 2000
  • This paper suggests the variable structure controller with a new variable boundary layer for the accurate tracking control of the variable structure systems. Up to now, variable structure controller (VSC) applying the variable boundary layer did not remove chattering from an arbitrary initial state of the system trajectory because VSC has the limited initial state according to the fixed sliding surface. But, by using the linear time-varying sliding surfaces, the scheme has the robustness against chattering from all states. The suggested method can be applied to the second-order nonlinear systems with parameter uncertainty and extraneous disturbances, and has better tracking performance than the conventional method. To demonstrate the advantages of the proposed algorithm, it is applied to a two-link manipulator.

  • PDF

The Position Control of Excavator's Attachment using Multi-layer Neural Network (다층 신경 회로망을 이용한 굴삭기의 위치 제어)

  • Seo, Sam-Joon;Kwon, Dai-Ik;Seo, Ho-Joon;Park, Gwi-Tae;Kim, Dong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.705-709
    • /
    • 1995
  • The objective of this study is to design a multi-layer neural network which controls the position of excavator's attachment. In this paper, a dynamic controller has been developed based on an error back-propagation(BP) neural network. Since the neural network can model an arbitrary nonlinear mapping, it was used as a commanded feedforward input generator. A PD feedback controller is used in parallel with the feedforward neural network to train the system. The neural network was trained by the current state of the excavator as well as the PD feedback error. By using the BP network as a feedforward controller, no a priori knowledge on system dynamics is need. Computer simulation results demonstrate such powerful characteristics of the proposed controller as adaptation to changing environment, robustness to disturbancen and performance improvement with the on-line learning in the position control of excavator attachment.

  • PDF

Harmonic Current Compensation based on Three-phase Three-level Shunt Active Filter using Fuzzy Logic Current Controller

  • Salim, Chennai;Benchouia, M.T.;Golea, A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.595-604
    • /
    • 2011
  • A three-phase three-level shunt active filter controlled by fuzzy logic current controller which can compensate current harmonics generated by nonlinear loads is presented. Three-level inverters and fuzzy controllers have been successfully employed in several power electronic applications these past years. To improve the conventional pwm controller performance, a new control scheme based on fuzzy current controller is adopted for three-level (NPC) shunt active filter. The scheme is designed to improve compensation capability of APF by adjusting the current error using a fuzzy rule. The inverter current reference signals required to compensate harmonic currents use the synchronous reference detection method. This technique is easy to implement and achieves good results. To maintain the dc voltage across capacitor constant and reduce inverter losses, a proportional integral voltage controller is used. The simulation of global system control and power circuits is performed using Matlab-Simulink and SimPowerSystem toolbox. The results obtained in transient and steady states under various operating conditions show the effectiveness of the proposed shunt active filter based on fuzzy current controller compared to the conventional scheme.

Multiobjective Optimal Reactive Power Flow Using Elitist Nondominated Sorting Genetic Algorithm: Comparison and Improvement

  • Li, Zhihuan;Li, Yinhong;Duan, Xianzhong
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.70-78
    • /
    • 2010
  • Elitist nondominated sorting genetic algorithm (NSGA-II) is adopted and improved for multiobjective optimal reactive power flow (ORPF) problem. Multiobjective ORPF, formulated as a multiobjective mixed integer nonlinear optimization problem, minimizes real power loss and improves voltage profile of power grid by determining reactive power control variables. NSGA-II-based ORPF is tested on standard IEEE 30-bus test system and compared with four other state-of-the-art multiobjective evolutionary algorithms (MOEAs). Pareto front and outer solutions achieved by the five MOEAs are analyzed and compared. NSGA-II obtains the best control strategy for ORPF, but it suffers from the lower convergence speed at the early stage of the optimization. Several problem-specific local search strategies (LSSs) are incorporated into NSGA-II to promote algorithm's exploiting capability and then to speed up its convergence. This enhanced version of NSGA-II (ENSGA) is examined on IEEE 30 system. Experimental results show that the use of LSSs clearly improved the performance of NSGA-II. ENSGA shows the best search efficiency and is proved to be one of the efficient potential candidates in solving reactive power optimization in the real-time operation systems.

Efficiency analysis of the boost converter using power balance condition (Power Balance 조건을 이용한 부스트 컨버터의 효율 분석)

  • Lee, Kook-Sun;Choy, Ick;Choi, Ju-Yeop;Song, Seung-Ho;An, Jin-Ung
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.120-127
    • /
    • 2011
  • Solar array has the following nonlinear characteristic, such as whose output current increases, output voltage is reduced. For this reason, boost converter with solar array system is always controlled to remain on the maximum power point of the solar array. In this case, we are not focused on the output of the solar array and not consider efficiency of the boost converter, which is assumed reliable. But efficiency of the converter also should be considered, which affects the total efficiency of the overall solar energy system. In this paper, efficiency calculation of the boost converter using power balance method is proposed, which will be used for a powerful reference before hardware realization.

Experimental and theoretical analysis of electronic musical structures with smart nanoparticles

  • Jing Han;Maryam Shokravi;F. Ming
    • Structural Engineering and Mechanics
    • /
    • v.91 no.4
    • /
    • pp.417-426
    • /
    • 2024
  • Nanotechnology has emerged as a promising avenue for enhancing musical structures. In this study, we analyze the static behavior of laser harp (i.e., electronic musical instrument) reinforced with Zinc Oxide (ZnO) nanoparticles. Leveraging the piezoelectric properties of ZnO nanoparticles, the structure is subjected to an electric field for intelligent control. The electronic musical structure is situated in a foundation with vertical springs and shear modulus constants. We employ the exponential Shear Deformation Beam Theory (ESDBT) to mathematically model the structure. A micro-electro-mechanical model is employed to determine the equivalent properties of the system. By utilizing nonlinear stress-strain relations, energy methods, and Hamilton's principle, we derive the motion equations. The buckling load of the electronic musical beam is calculated using the Difference Quadrature Method (DQM). The primary objective of this study is to present a mathematical model for electronic musical beams and determining the buckling load of the structure and to investigate the influence of nanotechnology and electric fields on its buckling behavior. The buckling is the case when the structure becomes deforms and unstable. Our findings reveal that the application of negative external voltage to the electronic musical structure increases both the stiffness and the buckling load of the musical system. Furthermore, reinforcing the electronic musical structure with ZnO nanoparticles results in an increased buckling load. Notably, the maximum enhancement in the 28-day compressive and tensile strengths of samples containing zinc oxide nanoparticles compared to the control sample resulting in increases of 18.70% and 3.77%, respectively.

Dynamic Characteristic Analysis and LMI-based H_ Controller Design for a Line of Sight Stabilization System

  • Lee, Won-Gu;Kim, In-Soo;Keh, Joong-Eup;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1187-1200
    • /
    • 2002
  • This paper is concerned with the design or an LMI (Linear Matrix Inequality) -based H$\infty$ controller for a line of sight (LOS) stabilization system and with its robustness performance. The linearization of the system is necessary to analyze various nonlinear characteristics, but the linearization entails modeling uncertainties which reduce its performance. In addition, the stability of the LOS can be adversely affected by angular velocity disturbances while the vehicle is moving. As the vehicle accelerates, all the factors that are Ignored and simplified for the linearization tend to Inhibit the performance of the system. The robustness in the face of these uncertainties needs to be assured. This paper employs H$\infty$ control theory to address these problems and the LMI method to provide a suitable controller with minimal constraints for the system. Even though the system matrix does not have a full rank, the proposed method makes it possible to design a H$\infty$ controller and to deal with R and S matrices for reducing the system order. It can be also shown that the proposed robust controller has a better disturbance attenuation and tracking performance. The LMI method is also used to enhance the applicability of the proposed reduced-order H$\infty$ controller for the system given. The LMI-based H$\infty$ controller has superior disturbance attenuation and reference input tracking performance, compared with that of the conventional controller under real disturbances.

Design of Low Cost Controller for 5[kVA] 3-Phase Active Power Filter (5[kVA]급 3상 능동전력필터를 위한 저가형 제어기 설계)

  • 이승요;채영민;최해룡;신우석;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.26-34
    • /
    • 1999
  • According to increase of nonlinear power electronics equipment, active power filters have been researched and developed for many years to compensate harmonic disturbances and reactive power. However the commercial of active power filter is being proceeded slowly, because the cost of active power filter compared to the passive filter for harmonic and reactive power compensation is expensive. Especially, the use of DSP (Digital Signal Processing) chip, which is frequently used to control 3-phase active power filter, is a factor of increasing the cost of active power filters. On the other hand, the use of only analog controller makes the controller's circuits much more complicate and depreciates the flexibilities of controller. In this paper, a controller with low cost for 5[kVA] 3-phase active power filter system is designed. To reduce the expense of active filter system, the presented controller is composed of digital control part using Intel 80C196KC $\mu$P and analog control part using hysteresis controller for current control. Characteristic analysis of designed controller for active filter system is performed by computer simulation and compensating characteristics of the designed controller are verified by experiment.tegy can apply to the vector control, leading to better output torque capability in the ac motor drive system. This strategy is that in the overmodulation range, the d-axis output current is given a priority to regulate the flux well, instead the q-axis output curent is sacrificed. Therefore, the vector control even in the overmodulation PWM operation can be achieved well. For this purpose, the d-axis output voltage of a current controller to control the flux is conserved. the q-axis output voltage to control the torque is controlled to place the reference voltage vector on the hexagon boundary in case of the overmodulation. The validity of the proposed overall scheme is confirmed by simulation and experiments for a 22[kW] induction motor drive system.

GPS/INS Integration using Vector Delay Lock Loop Processing Technique

  • Kim, Hyun-Soo;Bu, Sung-Chun;Jee, Gyu-In
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2641-2647
    • /
    • 2003
  • Conventional DLLs estimate the delay times of satellite signals individually and feed back these measurements to the VCO independently. But VDLL estimates delay times and user position directly and then estimate the feedback term for VCO using the estimated position changes. In this process, input measurements are treated as vectors and these vectors are used for navigation. First advantage of VDLL is that noise is reduced in all of the tracking channels making them less likely to enter the nonlinear region and fall below threshold. Second is that VDLL can operate successfully when the conventional independent parallel DLL approach fails completely. It means that VDLL receiver can get enough total signal power to track successfully to obtain accurate position estimates under the same conditions where the signal strength from each individual satellite is so low or week that none of the individual scalar DLL can remain in lock when operating independently. To operate VDLL successfully, it needs to know the initial user dynamics and position and prevents total system from the divergence. The suggested integration method is to use the inertial navigation system to provide initial dynamics for VDLL and to maintain total system stable. We designed the GPS/INS integrated navigation system. This new type of integrated system contained the vector pseudorange format generation block, VDLL signal processing block, position estimation block and the conversion block from position change to delay time feedback term aided by INS.

  • PDF

Improvement of Group Delay and Reduction of Computational Complexity in Linear Phase IIR Filters

  • Varasumanta, Saranuwaj;Sookcharoenphol, Dolchai;Sriteraviroj, Uthai;Janjitrapongvej, Kanok;Kanna, Channarong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.955-959
    • /
    • 2003
  • A technique for realizing linear phase IIR filters has been proposed by Powell-Chau which gives a real-time implementation of H(z-1).H(z), where H(z) is a causal nonlinear phase IIR filter. Powell-Chau system is linear but not timeinvariant system. Therefore, that system has group delay response that exhibits a minor sinusoidal variation superimposed on a constant value. In the signal processing, this oscillation seriously degrade the signal quality. Unfortunately, that system has a large sample delay of 4L and also more computational complexity. Proposed system is present a reduced computational complexity technique by moved the numerator polynomial of H(1/z) out to cascade with causal filter H(z) and remain only all-pole of H(1/z), then applied truncated infinite impulse response to finite with truncated IIR filtel $H_L$(z) and L sample delay to subtract the output sequence from the top and bottom filter. Proposed system is linear time invariance and group delay response and total harmonic distortion are also improved.

  • PDF