• Title/Summary/Keyword: Nonlinear components

Search Result 637, Processing Time 0.033 seconds

Reliability Evaluation of Power System Operations Considering Time-Varying Features of Components

  • Hu, Bo;Zheng, Ying;Yang, Hejun;Xia, Yun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1422-1431
    • /
    • 2015
  • The reliability of power system components can be affected by a numbers of factors such as the health level of components, external environment and operation environment of power systems. These factors also affect the electrical parameters of power system components for example the thermal capacity of a transmission element. The relationship of component reliability and power system is, therefore, a complex nonlinear function related to the above-mentioned factors. Traditional approaches for reliability assessment of power systems do not take the influence of these factors into account. The assessment results could not, therefore, reflect the short-term trend of the system reliability performance considering the influence of the key factors and provide the system dispatchers with enough information to make decent operational decisions. This paper discusses some of these important operational issues from the perspective of power system reliability. The discussions include operational reliability of power systems, reliability influence models for main performance parameters of components, time-varying reliability models of components, and a reliability assessment algorithm for power system operations considering the time-varying characteristic of various parameters. The significance of these discussions and applications of the proposed techniques are illustrated by case study results using the IEEE-RTS.

Nonlinear P-Δ analysis of steel frames with semi-rigid connections

  • Valipour, Hamid R.;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • v.14 no.1
    • /
    • pp.1-20
    • /
    • 2013
  • This paper presents the formulation for a novel force-based 1-D compound-element that captures both material and second order P-${\Delta}$ nonlinearities in steel frames. At the nodal points, the element is attached to nonlinear rotational and a translational springs which represent the flexural and axial stiffness of the connections respectively. By decomposing the total strain in the material as well as the generalised displacements of the flexible connections to their elastic and inelastic components, a secant solution strategy based on a direct iterative scheme is introduced and the corresponding solution strategy is outlined. The strain and slope of the deformed element are assumed to be small; however the equilibrium equations are satisfied for the deformed element taking account of P-${\Delta}$ effects. The formulation accuracy and efficiency is verified by some numerical examples on the nonlinear static, cyclic and dynamic analysis of steel frames.

A New Approach to the Design of a Fuzzy Sliding Mode Controller for Uncertain Nonlinear Systems

  • Seo, Sam-Jun;Kim, Dong-Sik;Kim, Dong-Won;Yoo, Ji-Yoon;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.646-651
    • /
    • 2004
  • This paper deals with a new adaptive fuzzy sliding mode controller and its application to an inverted pendulum. We propose new method of adaptive fuzzy sliding mode control scheme that the fuzzy logic system is used to approximate the unknown system functions in designing the SMC of uncertain nonlinear systems. The controller's construction and its analysis involve sliding modes. The proposed controller consists of two components. Sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum. The results show that both alleviation of chattering and performance are achieved

  • PDF

Aeroelastic Analysis of a Wing with Freeplay Considering Effects of Angle-of-Attack (받음각 효과를 고려한 유격이 있는 날개의 공탄성 해석)

  • Kim Jong-Yun;Yoo Jae-Han;Park Young-Keun;Lee In
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.295-300
    • /
    • 2005
  • The freeplay, one of the concentrated structural nonlinearities, is inevitable for control surfaces of a real air vehicle due to normal wear of components and manufacturing mismatches. Also aerodynamic nonlinearities caused by a shock wave occur in transonic region. In practice, these nonlinearities induce the limit cycle oscillation (LCO) and decrease the transonic flutter speed. In this study, the fictitious mass method is used to apply a modal approach to nonlinear structural models due to freeplay. The transonic small-disturbance (TSD) equation is used to calculate unsteady aerodynamic forces in transonic region. Nonlinear aeroelastic time responses are predicted by the coupled time integration method (CTIM). This method was also applied to a 3D all-movable control wing to investigate its nonlinear aeroelastic responses. The angle of attack effect on the LCO characteristics has been found to be closely related with the initial pitching moment.

  • PDF

Adaptive Fuzzy Sliding Mode Control for Uncertain Nonlinear Systems

  • Seo, Sam-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.12-18
    • /
    • 2011
  • This paper deals with a new adaptive fuzzy sliding mode controller and its application to an inverted pendulum. We propose a new method of adaptive fuzzy sliding mode control scheme that the fuzzy logic system is used to approximate the unknown system functions in designing the SMC of uncertain nonlinear systems. The controller's construction and its analysis involve sliding modes. The proposed controller consists of two components. Sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum. The results show that both alleviation of chattering and performance are achieved.

A Study on the Stiffness of Tire (타이어의 강성계수에 관한 고찰)

  • 이상선;반재삼;김항우;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.886-889
    • /
    • 2002
  • Finite Element Method for 3-D static loaded passenger car tire on the rigid surface is performed for studying the stiffness of tire to compare with experimental data. The tire elements used for FEM are defined each component to allow an easy change for the design parameters. Also, a hyperelastic material which is composed of tread and sidewall has been used to consider a large deformation of rubber components. The orthotropic characters of rubber-cord composite materials are used as well. The air pressure, a vertical and a lateral load are applied step by step and iterated by Modified Newton method for geometric and boundary condition nonlinear simulation. This study shows nonlinear analysis method for tire and the bearing capacity of tire due to the external force.

  • PDF

Nonlinear Finite Element Analysis for the Swaging of a High-Pressure Hose (고압호스 스웨이징에 대한 비선형 유한요소해석)

  • Kim, B.T.;Kim, H.J.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.44-50
    • /
    • 2003
  • The power steering hose is a kind of high-pressure hose with reinforced braids in rubber material. It is usually manufactured through the swaging process. In this paper, the deformation characteristics of a power steering hose during the swaging process were analyzed using the nonlinear finite element method. The material properties were obtained on experiments, and the contact conditions were used in consideration of real manufacturing process. Investigations were focused on the stress and strain values of the hose and meta] components at the maximum jaw stroke and at the completion of the process. Especially, the results of inner rubber component were interpreted in detail, because of its important role in the hose efficiency.

  • PDF

Design of a Controller for Nonlinear Electrohydraulic Position Control Systems (비선형 전기유압 위치제어시스템용 제어기 설계)

  • 서원모;진강규;하주식;박진길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.73-83
    • /
    • 1991
  • A tracking controller which can improve the performance of nonlinear electrohydraulic position control systems is designed and implemented. The method is based on augmenting the system with both compensated integrator and additional integrator, obtaining the feedback control law which stabilizes the linear part of the original nonlinear system, and then readjusting the feedback gains using the describing function method to eliminate the limit cycle in the steady-state. The proposed control law is implemented using OP amplifiers and electronic components, and step and ramp response tests are carried out in the electrohydraulic servomechanism EHS-160. The results show the improvement in both transient and steady-state responses.

  • PDF

Nonlinear aerostatic analysis of long-span suspension bridge by Element free Galerkin method

  • Zamiria, Golriz;Sabbagh-Yazdi, Saeed-Reza
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.75-84
    • /
    • 2020
  • The aerostatic stability analysis of a long-span suspension bridge by the Element-free Galerkin (EFG) method is presented in this paper. Nonlinear effects due to wind structure interactions should be taken into account in determining the aerostatic behavior of long-span suspension bridges. The EFG method is applied to investigate torsional divergence of suspension bridges, based on both the three components of wind loads and nonlinearities of structural geometric. Since EFG methods, which are based on moving least-square (MLS) interpolation, require only nodal data, the description of the geometry of bridge structure and boundaries consist of defining a set of nodes. A numerical example involving the three-dimensional EFG model of a suspension bridge with a span length of 888m is presented to illustrate the performance and potential of this method. The results indicate that presented method can effectively be applied for modeling suspension bridge structure and the computed results obtained using present modeling strategy for nonlinear suspension bridge structure under wind flow are encouragingly acceptable.

Nonlinear analysis of a pneumatic actuation system by digital simulation (전산모사에 의한 공압구동장치의 비선형 해석)

  • 조택동;신효필;문의준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1104-1109
    • /
    • 1991
  • Recently, Pneumatic Actuation System (PAS) has been used increasingly as a high performance fin-control servo actuation systems because of the special advantages of pneumatic units: primarily their low cost, small size, light weight, and tolerance to broad temperature extremes. In this study, a nonlinear model of PAS is derived through the detailed analysis of the major components in the typical system. The model includes nonlinear flow-pressure relationships of the flow through the solenoid valve openings and orifices, PWM algorithm for driving two solenoid valves as a closed-center 3-way valve for minimum gas consumption, solenoid valve dynamics, saturation, and friction. Simulation results are compared with the experimental ones for square and sinusoidal inputs to see the validity of the model. Independent of the shape and magnitude of the input signals, both results are in good agreements with minor difference.

  • PDF