• Title/Summary/Keyword: Nonlinear behavior of material

Search Result 657, Processing Time 0.03 seconds

Viscoelastic behavior on composite beam using nonlinear creep model

  • Jung, Sung-Yeop;Kim, Nam-Il;Shin, Dong Ku
    • Steel and Composite Structures
    • /
    • v.7 no.5
    • /
    • pp.355-376
    • /
    • 2007
  • The purpose of this study is to predict and investigate the time-dependent creep behavior of composite materials. For this, firstly the evaluation method for the modulus of elasticity of whole fiber and matrix is presented from the limited information on fiber volume fraction using the singular value decomposition method. Then, the effects of fiber volume fraction on modulus of elasticity of GFRP are verified. Also, as a creep model, the nonlinear curve fitting method based on the Marquardt algorithm is proposed. Using the existing Findley's power creep model and the proposed creep model, the effect of fiber volume fraction on the nonlinear creep behavior of composite materials is verified. Then, for the time-dependent analysis of a composite material subjected to uniaxial tension and simple shear loadings, a user-provided subroutine UMAT is developed to run within ABAQUS. Finally, the creep behavior of center loaded beam structure is investigated using the Hermitian beam elements with shear deformation effect and with time-dependent elastic and shear moduli.

Discrete element modeling of masonry structures: Validation and application

  • Pulatsu, Bora;Bretas, Eduardo M.;Lourenco, Paulo B.
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.563-582
    • /
    • 2016
  • The failure mechanism and maximum collapse load of masonry structures may change significantly under static and dynamic excitations depending on their internal arrangement and material properties. Hence, it is important to understand correctly the nonlinear behavior of masonry structures in order to adequately assess their safety and propose efficient strengthening measures, especially for historical constructions. The discrete element method (DEM) can play an important role in these studies. This paper discusses possible collapse mechanisms and provides a set of parametric analyses by considering the influence of material properties and cross section morphologies on the out of plane strength of masonry walls. Detailed modeling of masonry structures may affect their mechanical strength and displacement capacity. In particular, the structural behavior of stacked and rubble masonry walls, portal frames, simple combinations of masonry piers and arches, and a real structure is discussed using DEM. It is further demonstrated that this structural analysis tool allows obtaining excellent results in the description of the nonlinear behavior of masonry structures.

Plastic analysis of steel arches and framed structures with various cross sections

  • Silva, Jessica L.;Deus, Lidiane R.R.M.;Lemes, Igor J.M.;Silveira, Ricardo A.M.
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.257-270
    • /
    • 2021
  • This paper presents a displacement-based numerical methodology following the Euler-Bernoulli theory to simulate the 2 nonlinear behavior of steel structures. It is worth emphasizing the adoption of co-rotational finite element formulations considering large displacements and rotations and an inelastic material behavior. The numerical procedures proposed considers plasticity concentrated at the finite elements nodes, and the simulation of the steel nonlinear behavior is approached via the Strain Compatibility Method (SCM), where the material constitutive relation is used explicitly. The SCM is also applied in determining the sections bearing capacity. Moreover, the present numerical approach is not limited to a specific structural member cross-sectional typology, with the residual stress models introduced explicitly in subareas of steel cross-sections generated by a 2D discretization. Finally, results consistent with the literature and with low processing time are presented.

Cracking behavior of RC shear walls subject to cyclic loadings

  • Kwak, Hyo-Gyoung;Kim, Do-Yeon
    • Computers and Concrete
    • /
    • v.1 no.1
    • /
    • pp.77-98
    • /
    • 2004
  • This paper presents a numerical model for simulating the nonlinear response of reinforced concrete (RC) shear walls subject to cyclic loadings. The material behavior of cracked concrete is described by an orthotropic constitutive relation with tension-stiffening and compression softening effects defining equivalent uniaxial stress-strain relation in the axes of orthotropy. Especially in making analytical predictions for inelastic behaviors of RC walls under reversed cyclic loading, some influencing factors inducing the material nonlinearities have been considered. A simple hysteretic stress-strain relation of concrete, which crosses the tension-compression region, is defined. Modification of the hysteretic stress-strain relation of steel is also introduced to reflect a pinching effect depending on the shear span ratio and to represent an average stress distribution in a cracked RC element, respectively. To assess the applicability of the constitutive model for RC element, analytical results are compared with idealized shear panel and shear wall test results under monotonic and cyclic shear loadings.

Dynamic Behavior of the Plane Circular Arches with the Shape Imperfections (형상불완전을 갖는 평면 원호 아치의 동적 거동)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.3
    • /
    • pp.85-93
    • /
    • 2001
  • In this study, a computer program considering shape imperfections of arch under dynamic loading was developed. The shape imperfection of arch was assumed as higher degree polynomial expressed as $\omega$$_{i}$ = $\omega$$_{o}$ (1-(2$\chi$/L)$^{m}$ )$^n$and sinusoidal curve such as $\omega$$_{i}$ = $\omega$$_{o}$ sin(η$\pi$$\chi$/L). In finite element formulation, the material nonlinear behavior was assumed the elasto-viscoplastic model highly corresponding to the real behavior of the material and the geometrically nonlinear behavior was modeled using Lagrangian description of motion. Also, the behavior of steel was modeled by applying yield criteria of Von Mises. The developed program was applied to the analysis of the dynamic behavior for the clamped beam subjected to the concentrated load at midspan and the results were compared with those from other research to investigate accuracy of the presented finite element program. In numerical examples, the shape imperfections of L/500, L/1,000 and L/2,000 were considered and the modes of shape imperfections of the symmetric and antisymmetric were adopted. The effects of the shape imperfections on the dynamic behavior of arch were conspicuous and results of analysis indicate that the reasonable values of arch rise to arch span ratio ranged between 0.1 and 0.3.

  • PDF

Material Nonlinear Behavior and Microstructural Transition of Porous Polyurethane Foam under Uniaxial Compressive Loads (일축 압축하중 하 다공성 폴리우레탄폼의 재료비선형 거동 및 미세구조 변화)

  • Lee, Eun Sun;Goh, Tae Sik;Lee, Chi-Seung
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.688-694
    • /
    • 2017
  • Porous materials such as polymeric foam are widely adopted in engineering and biomedical fields. Porous materials often exhibit complex nonlinear behaviors and are sensitive to material and environmental factors including cell size and shape, amount of porosity, and temperature, which are influenced by the type of base materials, reinforcements, method of fabrication, etc. Hence, the material characteristics of porous materials such as compressive stress-strain behavior and void volume fraction according to aforementioned factors should be precisely identified. In this study, unconfined uniaxial compressive test for two types of closed-cell structure polyurethane foam, namely, 0.16 and $0.32g/cm^3$ of densities were carried out. In addition, the void volume fraction of three different domains, namely, center, surface and buckling regions under various compressive strains (10 %, 30 %, 50 % and 70 %) were quantitatively observed using Micro 3D Computed Tomography(micro-CT) scanning system. Based on the experimental results, the relationship between compressive strain and void volume fraction with respect to cell size, density and boundary condition were investigated.

An Analysis on the Nonlinear Behavior of Block Pavements using Multi-Load Level Falling Weight Deflectometer Testing (다단계 FWD 하중을 이용한 블록포장의 비선형 거동 분석)

  • Park, Hee Mun;Kim, Yeon Tae;Lee, Su Hyung
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.35-40
    • /
    • 2016
  • OBJECTIVES : The objective of this study is to analyze the nonlinear behavior of block pavements using multi-load level falling weight deflectometer (FWD) deflections. METHODS : Recently, block pavements are employed not only in sidewalks, but also in roadways. For the application of block pavements in roadways, the structural capacities of subbase and subgrade are important factors that support the carry traffic load. Multi-load level FWD testing was conducted on block pavements to analyze their nonlinear behavior. The deflection ratio due to the increase in load was analyzed to estimate the nonlinearity of block pavements. Finite element method with nonlinear soil model was applied to simulate the actual nonlinear behavior of the block pavement under different levels of load. RESULTS : The results of the FWD testing show that the center deflections in block pavements are approximately ten times greater than that in asphalt pavements. The deflection ratios of the block pavement due to the increase in the load range from 1.2 to 1.5, indicating that the deflection increased by 20~50%. The material coefficients of the nonlinear soil model were determined by comparing the measured deflections with the predicted deflections using the finite element method. CONCLUSIONS : In this study, the nonlinear behavior of block pavements was reviewed using multi-load level FWD testing. The deflection ratio proposed in this study can estimate the nonlinearity of block pavements. The use of nonlinear soil model in subbase and subgrade increases the accuracy of predicting deflections in finite element method.

Structural Behavior Analysis of Two-way RC Slabs by p-Version Nonlinear Finite Element Model (p-Version 비선형 유한요소모텔에 의한 2방향 철근 콘크리트 슬래브의 역학적 거동해석)

  • Cho, Jin-Goo;Park, Jin-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.15-24
    • /
    • 2005
  • This study is focused on modeling to predict the behavior of two-way RC slabs. A new finite element model will be presented to analyze the nonlinear behavior of RC slabs. The numerical approach is based on the p-version degenerate shell element including theory of anisotropic laminated composites, theory of materially and geometrically nonlinear plates. In the nonlinear formulation of this model, the total Lagrangian formulation is adopted with large deflections and moderate rotations being accounted for in the sense of von Karman hypothesis. The material model is based on the Kuper's yield criterion, hardening rule, and crushing condition. The validity of the proposed p-version nonlinear RC finite element model is demonstrated through the load-deflection curves and the ultimate loads. It is shown that the proposed model is able to adequately predict the deflection and ultimate load of two-way slabs with respect to steel arrangements and steel ratios.

Constitutive Modeling for Resilient Behavior of Granular Materials under Repeated Loading (반복하중을 받는 입상재료의 회복탄성거동에 관한 구성모델)

  • Rhee, Suk Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.827-838
    • /
    • 1994
  • Numerous pavement response models rely on constitutive relationships to describe the response of granular materials. In this study, a nonlinear elastic constitutive model which is a function of bulk stress and octahedral shear stress is proposed to describe the resilient behavior of thick granular base courses under flexible airfield pavements. Special features of this model are its accuracy to predict the nonlinear resilient behavior, its simplicity to determine the material constants and its ability to model the secondary effect of decreasing the resilient modulus due to shear effects. In laboratory tests, the nonlinear resilient behavior of granular materials is investigated and values of resilient moduli are determined to provide data for verifying the proposed model. It is found that the resilient modulus is much more dependent on the states of stresses in terms of bulk stress and deviator stress than any other factors. Result of comparison shows that predicted values of resilient moduli are in good agreement with the measured values indicating that the proposed model is suitable to describe the nonlinear resilient behavior of the granular material with wide range of stress states which meet in airfield pavements.

  • PDF